Given a set of pairwise disjoint polygonal obstacles in the plane, finding an obstacle-avoiding Euclidean shortest path between two points is a classical problem in computational geometry and has been studied extensively. Previously, Hershberger and Suri (in SIAM Journal on Computing , 1999) gave an algorithm of O(n log n ) time and O(n log n ) space, where n is the total number of vertices of all obstacles. Recently, by modifying Hershberger and Suri’s algorithm, Wang (in SODA’21) reduced the space to O(n) while the runtime of the algorithm is still O(n log n ). In this article, we present a new algorithm of O(n+h log h ) time and O(n) space, provided that a triangulation of the free space is given, where h is the number of obstacles. The algorithm is better than the previous work when h is relatively small. Our algorithm builds a shortest path map for a source point s so that given any query point t , the shortest path length from s to t can be computed in O (log n ) time and a shortest s - t path can be produced in additional time linear in the number of edges of the path.
more »
« less
Shortest Paths in the Plane with Obstacle Violations
We study the problem of finding shortest paths in the plane among h convex obstacles, where the path is allowed to pass through (violate) up to k obstacles, for 𝑘≤ℎ. Equivalently, the problem is to find shortest paths that become obstacle-free if k obstacles are removed from the input. Given a fixed source point s, we show how to construct a map, called a shortest k-path map, so that all destinations in the same region of the map have the same combinatorial shortest path passing through at most k obstacles. We prove a tight bound of 𝛩(𝑘𝑛) on the size of this map, and show that it can be computed in 𝑂(𝑘2𝑛log𝑛) time, where n is the total number of obstacle vertices.
more »
« less
- Award ID(s):
- 1814172
- PAR ID:
- 10168685
- Date Published:
- Journal Name:
- Algorithmica
- Volume:
- 82
- ISSN:
- 0178-4617
- Page Range / eLocation ID:
- 1813-1832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract A novel, exact algorithm is presented to solve the path planning problem that involves finding the shortest collision-free path from a start to a goal point in a two-dimensional environment containing convex and non-convex obstacles. The proposed algorithm, which is called the shortest possible path (SPP) algorithm, constructs a network of lines connecting the vertices of the obstacles and the locations of the start and goal points which is smaller than the network generated by the visibility graph. Then it finds the shortest path from start to goal point within this network. The SPP algorithm generates a safe, smooth and obstacle-free path that has a desired distance from each obstacle. This algorithm is designed for environments that are populated sparsely with convex and nonconvex polygonal obstacles. It has the capability of eliminating some of the polygons that do not play any role in constructing the optimal path. It is proven that the SPP algorithm can find the optimal path in O(nn r2 ) time, where n is the number of vertices of all polygons and n ̓ is the number of vertices that are considered in constructing the path network (n ̓ ≤ n). The performance of the algorithm is evaluated relative to three major classes of algorithms: heuristic, probabilistic, and classic. Different benchmark scenarios are used to evaluate the performance of the algorithm relative to the first two classes of algorithms: GAMOPP (genetic algorithm for multi-objective path planning), a representative heuristic algorithm, as well as RRT (rapidly-exploring random tree) and PRM (probabilistic road map), two well-known probabilistic algorithms. Time complexity is known for classic algorithms, so the presented algorithm is compared analytically.more » « less
-
We consider several variants of the map-matching problem, which seeks to find a path Q in graph G that has the smallest distance to a given trajectory P (which is likely not to be exactly on the graph). In a typical application setting, P models a noisy GPS trajectory from a person traveling on a road network, and the desired path Q should ideally correspond to the actual path in G that the person has traveled. Existing map-matching algorithms in the literature consider all possible paths in G as potential candidates for Q. We find solutions to the map-matching problem under different settings. In particular, we restrict the set of paths to shortest paths, or concatenations of shortest paths, in G. As a distance measure, we use the Fréchet distance, which is a suitable distance measure for curves since it takes the continuity of the curves into account.more » « less
-
null (Ed.)Many methods in learning from demonstration assume that the demonstrator has knowledge of the full environment. However, in many scenarios, a demonstrator only sees part of the environment and they continuously replan as they gather information. To plan new paths or to reconstruct the environment, we must consider the visibility constraints and replanning process of the demonstrator, which, to our knowledge, has not been done in previous work. We consider the problem of inferring obstacle configurations in a 2D environment from demonstrated paths for a point robot that is capable of seeing in any direction but not through obstacles. Given a set of survey points, which describe where the demonstrator obtains new information, and a candidate path, we con-struct a Constraint Satisfaction Problem (CSP) on a cell decomposition of the environment. We parameterize a set of obstacles corresponding to an assignment from the CSP and sample from the set to find valid environments. We show that there is a probabilistically-complete, yet not entirely tractable, algorithm that can guarantee novel paths in the space are unsafe or possibly safe. We also present an incomplete, but empirically-successful, heuristic-guided algorithm that we apply in our experiments to 1) planning novel paths and 2) recovering a probabilistic representation of the environment.more » « less
-
In the minimum constraint removal problem, we are given a set of overlapping geometric objects as obstacles in the plane, and we want to find the minimum number of obstacles that must be removed to reach a target point t from the source point s by an obstacle-free path. The problem is known to be intractable and no sub-linear approximations are known even for simple obstacles such as rectangles and disks. The main result of our paper is an approximation framework that gives an O(√nα(n))-approximation for polygonal obstacles, where α(n) denotes the inverse Ackermann’s function. For pseudodisks and rectilinear polygons, the same technique achieves an O(√n)-approximation. The technique also gives O (√n)-approximation for the minimum color path problem in graphs. We also present some inapproximability results for the geometric constraint removal problem.more » « less