skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Product Inhibition in Nucleophilic Aromatic Substitution through DPPPent-Supported π-Arene Catalysis
Nucleophilic aromatic substitution (SNAr) of fluorobenzene by morpholine at a bis(diphenylphosphino)pentane-supported ruthenim complex is investigated as a model system for π-arene catalysis through the synthesis and full characterization of proposed intermediates. The SNAr step proceeds quickly at room temperature, however the product N-phenylmorpholine binds tightly to the ruthenium ion. In the case examined, the thermodynamics of arene binding favor product N-phenylmorpholine over fluorobenzene binding by a factor of 2,000, corresponding to significant product inhibition. Observations of the catalyst resting state support this hypothesis and demonstrate an additive-controlled role for a previously-proposed ligand cyclometalation.  more » « less
Award ID(s):
1847813
PAR ID:
10168693
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Dalton Transactions
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The exceptionally π-basic metal fragments {MoTp(NO)(DMAP)} and {WTp(NO)(PMe3)} (Tp = tris(pyrazolyl)borate; DMAP = 4-(N,N-dimethylamino)pyridine) form thermally stable η2-coordinated complexes with a variety of electron-deficient arenes. The tolerance of substituted arenes with fluorine-containing electron withdrawing groups (EWG; −F, −CF3, −SF5) is examined for both the molybdenum and tungsten systems. When the EWG contains a π bond (nitriles, aldehydes, ketones, ester), η2 coordination occurs predominantly on the nonaromatic functional group. However, complexation of the tungsten complex with trimethyl orthobenzoate (PhC(OMe)3) followed by hydrolysis allows access to an η2-coordinated arene with an ester substituent. In general, the tungsten system tolerates sulfur-based withdrawing groups well (e.g., PhSO2Ph, MeSO2Ph), and the integration of multiple electron-withdrawing groups on a benzene ring further enhances the π-back-bonding interaction between the metal and aromatic ligand. While the molybdenum system did not form stable η2-arene complexes with the sulfones or ortho esters, it was capable of forming rare examples of stable η2-coordinated arene complexes with a range of fluorinated benzenes (e.g., fluorobenzene, difluorobenzenes). In contrast to what has been observed for the tungsten system, these complexes formed without interference of C–H or C–F insertion. 
    more » « less
  2. Cofacial Fe 2 , Co 2 , and Ni 2 complexes supported by a para -terphenyl diphosphine ligand were prepared. Central arene deplanarization and a μ 2 :(η 3 ,η 3 ) coordination mode suggest partial bisallyl character in the Fe 2 and Co 2 complexes. An oxidation induced shift in Fe 2 –arene binding highlights the non-innocent nature of the arene ligand. 
    more » « less
  3. Abstract We report the synthesis and characterization of sulfated pillar[5]arene hosts (P5S2‐P5S10) that differ in the number of sulfate substituents. All fiveP5Snhosts display high solubility in water (73–131 mM) and do not undergo significant self‐association according to1H NMR dilution experiments. The x‐ray crystal structures ofP5S6,P5S6 ⋅ Me6HDA,P5S8 ⋅ Me6HDA, andP5S10 ⋅ Me6HDAreveal one intracavity molecule ofMe6HDAand several external molecules ofMe6HDAwhich form a network of close methonium ⋅ ⋅ ⋅ sulfate interactions. The thermodynamic parameters of complexation betweenP5Snand the panel of guests was measured by direct or competitive isothermal titration calorimetry. We find that the binding free energy toward a guest becomes more negative as the number of sulfate substituents increase. Conversely, the binding free energy of a specific sulfated pillar[5]arene toward a homologous series of guests becomes more negative as the number of NMe groups increases. The ability to tune the host ⋅ guest affinity by changing the number of sulfate substituents will be valuable in supramolecular polymers, separation materials, and latching applications. 
    more » « less
  4. The conformational preferences of 28 sterically and electronically diverse N-aryl amides were detd. using d. functional theory (DFT), using the B3LYP functional and 6-31G(d) basis set.  For each compd., both the cis and trans conformers were optimized, and the difference in ground state energy calcd.  For six of the compds., the potential energy surface was detd. as a function of rotation about the N-aryl bond (by 5° increments) for both cis and trans conformers.  A natural bond orbital (NBO) deletion strategy was also employed to det. the extent of the contribution of conjugation to the energies of each of the conformers.  By comparing these computational results with previously reported exptl. data, an explanation for the divergent conformational preferences of 2° N-aryl amides and 3° N-alkyl-N-aryl amides was formulated.  This explanation accounts for the obsd. relationships of both steric and electronic factors detg. the geometry of the optimum conformation, and the magnitude of the energetic difference between cis and trans conformers: except under the most extreme scenarios, 2° amides maintain a trans conformation, and the N-bound arene lies in the same plane as the amide unless it has ortho substituents; for 3° N-alkyl-N-aryl amides in which the alkyl and aryl substituents are connected in a small ring, trans conformations are also favored, for most cases other than formamides, and the arene and amide remain in conjugation; and for 3° N-alkyl-N-aryl amides in which the alkyl and aryl substituents are not connected in a small ring, allylic strain between the two N-bound substituents forces the aryl substituent to rotate out of the plane of the amide, and the trans conformation is destabilized with respect to the cis conformation due to repulsion between the π system of the arene and the lone pairs on the oxygen atom of the carbonyl.  The cis conformation is increasingly more stable than the trans conformation as electron d. is increased on the arene because the more electron-rich arenes adopt a more orthogonal arrangement, increasing the interaction with the carbonyl oxygen, while simultaneously increasing the magnitude of the repulsion due to the increased electron d. in the π system.  The trans conformation is favored for 2° amides even when the arene is orthogonal to the amide, in nearly all cases, because the C-N-C bond angle can expend at the expense of the C-N-H bond angles, while this is not favorable for 3° amides. 
    more » « less
  5. Abstract We report the synthesis, X‐ray crystal structure, and molecular recognition properties of pillar[n]arene derivativeP[6]AS, which we refer to as Pillar[6]MaxQ along with analoguesP[5]ASandP[7]AStoward guests1–18. The ultratight binding affinity ofP[5]ASandP[6]AStoward quaternary (di)ammonium ions renders them prime candidates for in vitro and in vivo non‐covalent bioconjugation, for imaging and delivery applications, and as in vivo sequestration agents. 
    more » « less