skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-driven parallelizable trac incident detection using spatio-temporally denoised robust thresholds
Automatic incident detection (AID) is crucial for reducing non-recurrent congestion caused by trac incidents. In this paper we propose a data-driven AID framework that can leverage large-scale historical trac data along with the inherent topology of the trac networks to obtain robust trac patterns. Such trac patterns can be compared with the real-time trac data to detect trac incidents in the road network. Our AID framework consists of two basic steps for trac pattern estimation. First, we estimate robust univariate speed threshold using historical trac information from individual sensors. This step can be parallelized using MapReduce framework thereby making it feasible to implement the framework over large networks. Our study shows that such robust thresholds can improve incident detection performance significantly compared to traditional threshold determination. Second, we leverage the knowledge of the topology of the road network to construct threshold heatmaps and perform image denoising to obtain spatio-temporally denoised thresholds. We used two image denoising techniques, bilateral filtering and total variation for this purpose. Our study shows that overall AID performance can be improved significantly using bilateral filter denoising compared to the noisy thresholds or thresholds obtained using total variation denoising.  more » « less
Award ID(s):
1830254
PAR ID:
10168695
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Transportation research Part C Emerging technologies
ISSN:
1879-2359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern smart cities need smart transportation solutions to quickly detect various traffic emergencies and incidents in the city to avoid cascading traffic disruptions. To materialize this, roadside units and ambient transportation sensors are being deployed to collect speed data that enables the monitoring of traffic conditions on each road segment. In this paper, we first propose a scalable data-driven anomaly-based traffic incident detection framework for a city-scale smart transportation system. Specifically, we propose an incremental region growing approximation algorithm for optimal Spatio-temporal clustering of road segments and their data; such that road segments are strategically divided into highly correlated clusters. The highly correlated clusters enable identifying a Pythagorean Mean-based invariant as an anomaly detection metric that is highly stable under no incidents but shows a deviation in the presence of incidents. We learn the bounds of the invariants in a robust manner such that anomaly detection can generalize to unseen events, even when learning from real noisy data. Second, using cluster-level detection, we propose a folded Gaussian classifier to pinpoint the particular segment in a cluster where the incident happened in an automated manner. We perform extensive experimental validation using mobility data collected from four cities in Tennessee, compare with the state-of-the-art ML methods, to prove that our method can detect incidents within each cluster in real-time and outperforms known ML methods. 
    more » « less
  2. Modern smart cities are focusing on smart transportation solutions to detect and mitigate the effects of various traffic incidents in the city. To materialize this, roadside units and ambient trans-portation sensors are being deployed to collect vehicular data that provides real-time traffic monitoring. In this paper, we first propose a real-time data-driven anomaly-based traffic incident detection framework for a city-scale smart transportation system. Specifically, we propose an incremental region growing approximation algorithm for optimal Spatio-temporal clustering of road segments and their data; such that road segments are strategically divided into highly correlated clusters. The highly correlated clusters enable identifying a Pythagorean Mean-based invariant as an anomaly detection metric that is highly stable under no incidents but shows a deviation in the presence of incidents. We learn the bounds of the invariants in a robust manner such that anomaly detection can generalize to unseen events, even when learning from real noisy data. We perform extensive experimental validation using mobility data collected from the City of Nashville, Tennessee, and prove that the method can detect incidents within each cluster in real-time. 
    more » « less
  3. Designing effective emergency response management (ERM) systems to respond to incidents such as road accidents is a major problem faced by communities. In addition to responding to frequent incidents each day (about 240 million emergency medical services calls and over 5 million road accidents in the US each year), these systems also support response during natural hazards. Recently, there has been a consistent interest in building decision support and optimization tools that can help emergency responders provide more efficient and effective response. This includes a number of principled subsystems that implement early incident detection, incident likelihood forecasting and strategic resource allocation and dispatch policies. In this paper, we highlight the key challenges and provide an overview of the approach developed by our team in collaboration with our community partners. 
    more » « less
  4. Plant disease is one of many obstacles encountered in the field of agriculture. Machine learning models have been used to classify and detect diseases among plants by analyzing and extracting features from plant images. However, a common problem for many models is that they are trained on clean laboratory images and do not exemplify real conditions where noise can be present. In addition, the emergence of adversarial noise that can mislead models into wrong predictions poses a severe challenge to developing preserved models against noisy environments. In this paper, we propose an end-to-end robust plant disease detection framework that combines a DenseNet-based classification with a vigorous deep learning denoising model. We validate a variety of deep learning denoising models and adopt the Real Image Denoising network (RIDnet). The experiments have shown that the proposed denoising classification framework for plant disease detection is more robust against noisy or corrupted input images compared to a single classification model and can also successfully defend against adversarial noises in images. 
    more » « less
  5. Lee, Seokcheon (Ed.)
    Traditionally, traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident requests without accommodating the interdependencies on incident evolutions in the environment. However, ignoring these inherent interdependencies while making current deployment decisions is shortsighted, and the resulting naive deployment strategy can significantly worsen the overall incident delay impact on the network. The interdependencies on incident evolution in the environment, including those between incident occurrences and those between resource availability in near‐future requests and the anticipated duration of the immediate incident request, should be considered through a look‐ahead model when making current‐stage deployment decisions. This study develops a new proactive framework based on the distributed constraint optimization problem (DCOP) to address the above limitations, overcoming conventional TIM models that cannot accommodate the dependencies in the TIM problem. Furthermore, the optimization objective is formulated to incorporate unmanned aerial vehicles (UAVs). The UAVs’ role in TIM includes exploring uncertain traffic conditions, detecting unexpected events, and augmenting information from roadway traffic sensors. Robustness analysis of our model for multiple TIM scenarios shows satisfactory performance using local search exploration heuristics. Overall, our model reports a significant reduction in total incident delay compared to conventional TIM models. With UAV support, we demonstrate a further decrease in the total incident delay ranging between 5% and 45% for the different number of incidents. UAVs’ active sensing can shorten response time of emergency vehicles and reduce uncertainties associated with the estimated incident delay impact. 
    more » « less