skip to main content

Title: Highly‐Cyclable Room‐Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries
Despite significant interest toward solid-state electrolytes owing to their superior safety in comparison to liquid-based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high-power density batteries. Here, a novel quasi-solid Li+ ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm(-2) at room temperature. The cycling overpotential is dropped by 75% in comparison to BP-free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ ions around (trifluoromethanesulfonyl)imide (TFSI-) pairs and ethylene-oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+ transport through the polymer host. Density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid-state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long-life cycling.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1706968 1721512 1805938
Publication Date:
Journal Name:
Advanced Functional Materials
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Composite polymer electrolytes (CPEs) for solid-state Li metal batteries (SSLBs) still suffer from gradually increased interface resistance and unconstrained Li dendrite growth. Herein, we addressed the challenges by designing a LiF-rich inorganic solid-electrolyte interphase (SEI) through introducing a fluoride-salt concentrated interlayer on CPE film. The rigid and flexible CPE helps accommodate the volume change of electrodes, while the polymeric high-concentrated electrolyte (PHCE) surface-layer regulates Li-ion flux due to the formation of a stable LiF-rich SEI via anion reduction. The designed CPE-PHCE presents enhanced ionic conductivity and high oxidation stability of > 5.0V (vs. Li/Li+). What’s more, it dramatically reduces the interfacial resistance and achieves a high critical current density of 4.5 mA cm-2 for dendrite-free cycling. The SSLBs, fabricated with thin CPE-PHCE membrane (< 100 μm) and Co-free LiNiO2 cathode, exhibit exceptional electrochemical performance and long cycling stability. This approach of SEI design can also be applied to other types of batteries.
  2. Dusastre, Vincent (Ed.)
    A critical challenge for next-generation lithium-based batteries lies in development of electrolytes that enable thermal safety along with use of high-energy-density electrodes. We describe molecular ionic composite (MIC) electrolytes based on an aligned liquid crystalline polymer combined with ionic liquids and concentrated Li salt. This high strength (200 MPa) and non-flammable solid electrolyte possesses outstanding Li+ conductivity (1 mS·cm-1 at 25 °C) and electrochemical stability (5.6 V vs Li|Li+) while suppressing dendrite growth and exhibiting low interfacial resistance (32 Ω·cm2) and overpotentials (≤ 120 mV @ 1 mA·cm-2) during Li symmetric cell cycling. A heterogeneous salt doping process modifies a locally ordered polymer-ion assembly to incorporate an inter-grain network filled with defective LiFSI & LiBF4 nanocrystals, strongly enhancing Li+ conduction. This modular material fabrication platform shows promise for safe and high-energy-density energy storage and conversion applications, incorporating the fast transport of ceramic-like conductors with the superior flexibility of polymer electrolytes.
  3. In the presence of Lewis acid salts, the cyclic ether, dioxolane (DOL), is known to undergo ring-opening polymerization inside electrochemical cells to form solid-state polymer batteries with good interfacial charge-transport properties. Here we report that LiNO3, which is unable to ring-open DOL, possesses a previously unknown ability to coordinate with and strain DOL molecules in bulk liquids, completely arresting their crystallization. The strained DOL electrolytes exhibit physical properties analogous to amorphous polymers, including a prominent glass transition, elevated moduli, and low activation entropy for ion transport, but manifest unusually high, liquidlike ionic conductivities (e.g., 1 mS/cm) at temperatures as low as −50 °C. Systematic electrochemical studies reveal that the electrolytes also promote reversible cycling of Li metal anodes with high Coulombic efficiency (CE) on both conventional planar substrates (1 mAh/cm2over 1,000 cycles with 99.1% CE; 3 mAh/cm2over 300 cycles with 99.2% CE) and unconventional, nonplanar/three-dimensional (3D) substrates (10 mAh/cm2over 100 cycles with 99.3% CE). Our finding that LiNO3promotes reversibility of Li metal electrodes in liquid DOL electrolytes by a physical mechanism provides a possible solution to a long-standing puzzle in the field about the versatility of LiNO3salt additives for enhancing reversibility of Li metal electrodes in essentially any aprotic liquidmore »electrolyte solvent. As a first step toward understanding practical benefits of these findings, we create functional Li||lithium iron phosphate (LFP) batteries in which LFP cathodes with high capacity (5 to 10 mAh/cm2) are paired with thin (50 μm) lithium metal anodes, and investigate their galvanostatic electrochemical cycling behaviors.

    « less
  4. Metal-ion batteries (e.g., lithium and sodium ion batteries) are the promising power sources for portable electronics, electric vehicles, and smart grids. Recent metal-ion batteries with organic liquid electrolytes still suffer from safety issues regarding inflammability and insufficient lifetime.1 As the next generation energy storage devices, all-solid-state batteries (ASSBs) have promising potentials for the improved safety, higher energy density, and longer cycle life than conventional Li-ion batteries.2 The nonflammable solid electrolytes (SEs), where only Li ions are mobile, could prevent battery combustion and explosion since the side reactions that cause safety issues as well as degradation of the battery performance are largely suppressed. However, their practical application is hampered by the high resistance arising at the solid–solid electrode–electrolyte interface (including cathode-electrolyte interface and anode-electrolyte interface).3 Several methods have been introduced to optimize the contact capability as well as the electrochemical/chemical stability between the metal anodes (i.e.: Li and Na) and the SEs, which exhibited decent results in decreasing the charge transfer resistance and broadening the range of the stable energy window (i.e., lowing the chemical potential of metal anode below the highest occupied molecular orbital of the SEs).4 Nevertheless, mitigation for the cathode in ASSB is tardily developed because: (1) themore »porous structure of the cathode is hard to be infiltrated by SEs;5 (2) SEs would be oxidized and decomposed by the high valence state elements at the surface of the cathode at high state of charge.5 Herein, we demonstrate a universal cathode design strategy to achieve superior contact capability and high electrochemical/chemical stability with SEs. Stereolithography is adopted as a manufacturing technique to realize a hierarchical three-dimensional (HTD) electrode architecture with micro-size channels, which is expected to provide larger contact areas with SEs. Then, the manufactured cathode is sintered at 700 °C in a reducing atmosphere (e.g.: H2) to accomplish the carbonization of the resin, delivering sufficiently high electronic conductivity for the cathode. To avoid the direct exposure of the cathode active materials to the SEs, oxidative chemical vapor deposition technique (oCVD) is leveraged to build conformal and highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) on the surface of the HTD cathode.6 To demonstrate our design strategy, both NCM811 and Na3V2(PO4)3 is selected as active materials in the HTD cathode, then each cathode is paired with organic (polyacrylonitrile-based) and inorganic (sulfur-based) SEs assembled into two batteries (total four batteries). SEM and TEM reveal the micro-size HTD structure with built-in channels. Featured by the HTD architecture, the intrinsic kinetic and thermodynamic conditions will be enhanced by larger surface contact areas, more active sites, improved infusion and electrolyte ion accessibility, and larger volume expansion capability. Disclosed by X-ray computed tomography, the interface between cathode and SEs in the four modified samples demonstrates higher homogeneity at the interface between the cathode and SEs than that of all other pristine samples. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than that of pristine samples, which confirms a weakened space charge layer by the enhanced contact capability. In addition, through Electron Energy Loss Spectroscopy coupled with Scanning Transmission Electron Microscopy, the preserved interface between HTD cathode and SE is identified; however, the decomposing of the pristine cathode is clearly observed. In addition, Finite element method simulations validate that the diffusion dynamics of lithium ions is favored by HTD structure. Such a demonstrated universal strategy provides a new guideline to engineer cathode electrolyte interface by reconstructing electrode structures that can be applicable to all solid-state batteries in a wide range of chemical conditions.« less
  5. The use of highly conductive solid-state electrolytes to replace conventional liquid organic electrolytes enables radical improvements in the reliability, safety and performance of lithium batteries. Here, we report the synthesis and characterization of a new class of nonflammable solid electrolytes based on the grafting of ionic liquids onto octa-silsesquioxane. The electrolyte exhibits outstanding room-temperature ionic conductivity (∼4.8 × 10 −4 S cm −1 ), excellent electrochemical stability (up to 5 V relative to Li + /Li) and high thermal stability. All-solid-state Li metal batteries using the prepared electrolyte membrane are successfully cycled with high coulombic efficiencies at ambient temperature. The good cycling stability of the electrolyte against lithium has been demonstrated. This work provides a new platform for the development of solid polymer electrolytes for application in room-temperature lithium batteries.