skip to main content

Title: Decomposition of plasma kinetic entropy into position and velocity space and the use of kinetic entropy in particle-in-cell simulations
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Physics of Plasmas
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe a systematic development of kinetic entropy as a diagnostic in fully kinetic particle-in-cell (PIC) simulations and use it to interpret plasma physics processes in heliospheric, planetary, and astrophysical systems. First, we calculate kinetic entropy in two forms – the “combinatorial” form related to the logarithm of the number of microstates per macrostate and the “continuous” form related to f ln f, where f is the particle distribution function. We discuss the advantages and disadvantages of each and discuss subtleties about implementing them in PIC codes. Using collisionless PIC simulations that are two-dimensional in position space and three-dimensional in velocity space, we verify the implementation of the kinetic entropy diagnostics and discuss how to optimize numerical parameters to ensure accurate results. We show the total kinetic entropy is conserved to three percent in an optimized simulation of anti-parallel magnetic reconnection. Kinetic entropy can be decomposed into a sum of a position space entropy and a velocity space entropy, and we use this to investigate the nature of kinetic entropy transport during collisionless reconnection. We find the velocity space entropy of both electrons and ions increases in time due to plasma heating during magnetic reconnection, while the position space entropymore »decreases due to plasma compression. This project uses collisionless simulations, so it cannot address physical dissipation mechanisms; nonetheless, the infrastructure developed here should be useful for studies of collisional or weakly collisional heliospheric, planetary, and astrophysical systems. Beyond reconnection, the diagnostic is expected to be applicable to plasma« less
  2. We investigate kinetic entropy-based measures of the non-Maxwellianity of distribution functions in plasmas, i.e. entropy-based measures of the departure of a local distribution function from an associated Maxwellian distribution function with the same density, bulk flow and temperature as the local distribution. First, we consider a form previously employed by Kaufmann & Paterson ( J. Geophys. Res. , vol. 114, 2009, A00D04), assessing its properties and deriving equivalent forms. To provide a quantitative understanding of it, we derive analytical expressions for three common non-Maxwellian plasma distribution functions. We show that there are undesirable features of this non-Maxwellianity measure including that it can diverge in various physical limits and elucidate the reason for the divergence. We then introduce a new kinetic entropy-based non-Maxwellianity measure based on the velocity-space kinetic entropy density, which has a meaningful physical interpretation and does not diverge. We use collisionless particle-in-cell simulations of two-dimensional anti-parallel magnetic reconnection to assess the kinetic entropy-based non-Maxwellianity measures. We show that regions of non-zero non-Maxwellianity are linked to kinetic processes occurring during magnetic reconnection. We also show the simulated non-Maxwellianity agrees reasonably well with predictions for distributions resembling those calculated analytically. These results can be important for applications, as non-Maxwellianity canmore »be used to identify regions of kinetic-scale physics or increased dissipation in plasmas.« less