Cognitive load has received increased focus as an area that can be more richly explored using neuroIS tools. This research study presents the application of electroencephalography and eye tracking technologies to examine cognitive load of student learners in biochemistry. In addition to leveraging the Pope Engagement Index and eye tracking analysis techniques, we seek better understanding of the relationship that various individual characteristics have with the level of cognitive load experienced. While this study focuses on a particular STEM student population as they manipulate various learning models, it has implications for further studies in human-computer interaction and other learning environments.
more »
« less
Visual Cues to Restore Student Attention based on Eye Gaze Drift, and Application to an Offshore Training System
Drifting student attention is a common problem in educational environments. We demonstrate 8 attention-restoring visual cues for display when eye tracking detects that student attention shifts away from critical objects. These cues include novel aspects and variations of standard cues that performed well in prior work on visual guidance. Our cues are integrated into an offshore training system on an oil rig. While students participate in training on the oil rig, we can compare our various cues in terms of performance and student preference, while also observing the impact of eye tracking. We demonstrate experiment software with which users can compare various cues and tune selected parameters for visual quality and effectiveness.
more »
« less
- Award ID(s):
- 1815976
- PAR ID:
- 10168892
- Date Published:
- Journal Name:
- ACM Symposium on Spatial User Interaction (SUI) 2019
- Page Range / eLocation ID:
- 1 to 2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Coordinating viewpoints with another person during a collaborative task can provide informative cues on human behavior. Despite the massive shift of collaborative spaces into virtual environments, versatile setups that enable eye-tracking in an online collaborative environment (distributed eye-tracking) remain unexplored. In this study, we present DisETrac- a versatile setup for eye-tracking in online collaborations. Further, we demonstrate and evaluate the utility of DisETrac through a user study. Finally, we discuss the implications of our results for future improvements. Our results indicate promising avenue for developing versatile setups for distributed eye-tracking.more » « less
-
Spatial ability is the ability to generate, store, retrieve, and transform visual information to mentally represent a space and make sense of it. This ability is a critical facet of human cognition that affects knowledge acquisition, productivity, and workplace safety. Although having improved spatial ability is essential for safely navigating and perceiving a space on earth, it is more critical in altered environments of other planets and deep space, which may pose extreme and unfamiliar visuospatial conditions. Such conditions may range from microgravity settings with the misalignment of body and visual axes to a lack of landmark objects that offer spatial cues to perceive size, distance, and speed. These altered visuospatial conditions may pose challenges to human spatial cognitive processing, which assists humans in locating objects in space, perceiving them visually, and comprehending spatial relationships between the objects and surroundings. The main goal of this paper is to examine if eye-tracking data of gaze pattern can indicate whether such altered conditions may demand more mental efforts and attention. The key dimensions of spatial ability (i.e., spatial visualization, spatial relations, and spatial orientation) are examined under the three simulated conditions: (1) aligned body and visual axes (control group); (2) statically misaligned body and visual axes (experiment group I); and dynamically misaligned body and visual axes (experiment group II). The three conditions were simulated in Virtual Reality (VR) using Unity 3D game engine. Participants were recruited from Texas A&M University student population who wore HTC VIVE Head-Mounted Displays (HMDs) equipped with eye-tracking technology to work on three spatial tests to measure spatial visualization, orientation, and relations. The Purdue Spatial Visualization Test: Rotations (PSVT: R), the Mental Cutting Test (MCT), and the Perspective Taking Ability (PTA) test were used to evaluate the spatial visualization, spatial relations, and spatial orientation of 78 participants, respectively. For each test, gaze data was collected through Tobii eye-tracker integrated in the HTC Vive HMDs. Quick eye movements, known as saccades, were identified by analyzing raw eye-tracking data using the rate of change of gaze position over time as a measure of mental effort. The results showed that the mean number of saccades in MCT and PSVT: R tests was statistically larger in experiment group II than in the control group or experiment group I. However, PTA test data did not meet the required assumptions to compare the mean number of saccades in the three groups. The results suggest that spatial relations and visualization may require more mental effort under dynamically misaligned idiotropic and visual axes than aligned or statically misaligned idiotropic and visual axes. However, the data could not reveal whether spatial orientation requires more/less mental effort under aligned, statically misaligned, and dynamically misaligned idiotropic and visual axes. The results of this study are important to understand how altered visuospatial conditions impact spatial cognition and how simulation- or game-based training tools can be developed to train people in adapting to extreme or altered work environments and working more productively and safely.more » « less
-
null (Ed.)Changes in task demands can have delayed adverse impacts on performance. This phenomenon, known as the workload history effect, is especially of concern in dynamic work domains where operators manage fluctuating task demands. The existing workload history literature does not depict a consistent picture regarding how these effects manifest, prompting research to consider measures that are informative on the operator's process. One promising measure is visual attention patterns, due to its informativeness on various cognitive processes. To explore its ability to explain workload history effects, participants completed a task in an unmanned aerial vehicle command and control testbed where workload transitioned gradually and suddenly. The participants’ performance and visual attention patterns were studied over time to identify workload history effects. The eye-tracking analysis consisted of using a recently developed eye-tracking metric called coefficient K , as it indicates whether visual attention is more focal or ambient. The performance results found workload history effects, but it depended on the workload level, time elapsed, and performance measure. The eye-tracking analysis suggested performance suffered when focal attention was deployed during low workload, which was an unexpected finding. When synthesizing these results, they suggest unexpected visual attention patterns can impact performance immediately over time. Further research is needed; however, this work shows the value of including a real-time visual attention measure, such as coefficient K , as a means to understand how the operator manages varying task demands in complex work environments.more » « less
-
Previous research has illuminated and defined meanings and understandings that students demonstrate when reasoning about graphical images. This study used verbal and physical cues to classify students’ reasoning as either static or emergent thinking. Eye-tracking software provided further insight into precisely what students were attending to when reasoning about these graphical images. Eye-tracking results, such as eye movements, switches between depictions of relevant quantities, and total time spent on attending to attributes of the graph depicting quantities, were used to uncover patterns that emerged within groups of students that exhibited similar in-the-moment meanings and understandings. Results indicate that eye-tracking data supports previously defined verbal and physical indicators of students’ ways of reasoning, and can document a change in attention for participants whose ways of reasoning over the course of a task change.more » « less
An official website of the United States government

