Topologically interlocked materials (TIMs) are material systems consisting of one or more repeating unit blocks assembled in a planar configuration such that each block is fully constrained geometrically by its neighbours. The assembly is terminated by a frame that constrains the outermost blocks. The resulting plate-like structure does not use any type of adhesive or fastener between blocks but is capable of carrying transverse loads. These material systems are advantageous due to their potential attractive combination of strength, toughness, and damage tolerance as compared to monolithic plates, especially when using lower strength materials. TIMs are damage tolerant due to the fact that cracks in any single block cannot propagate to neighbouring blocks. Many configurations of TIMs have been conceptualized in the past, particularly in architecture, but less work has been done to understand the mechanics of such varied assembly architectures. This work seeks to expand our knowledge of how TIM architecture is related to TIM mechanics. The present study considers TIMs created from the Archimedean and Laves tessellations. Each tessellation is configured as a TIM by projecting each edge of a tile at alternating angles from the normal to the tiling plane. For each tiling, multiple symmetries exist depending onmore »
Computational analysis of tensile damage and failure of mineralized tissue assisted with experimental observations
In this study, deformation and failure mechanisms of mineralized tissue (bone) were investigated both experimentally and computationally by performing diametral compression tests on millimetric disk specimens and conducting finite element analysis in which a granular micromechanics-based nonlinear user-defined material model is implemented. The force–displacement relationship obtained in the simulation agreed well with the experimental results. The simulation was also able to capture location of the failure initiation observed in the experiment, which is inside out from the hole along the loading axis. Furthermore, propagation of micro-sized cracks into failure was observed both in the experiment using simultaneous slow-motion microscopy imaging and in the simulation analyzing the local distortion and local volume change within the specimen. The anisotropy evolution was found to be significant around the hole along the loading axis by evaluating the anisotropy index computed using finite element results. In conclusion, this work revealed that the prediction capability of granular micromechanics-based user-defined nonlinear material model (UMAT) is promising considering the match between the results and observations from the physical experiment and finite element analysis such as force–displacement relationship and failure initiation/pattern. This work has also shown that the tensile damage and failure of mineralized tissues can be characterized using more »
- Award ID(s):
- 1727433
- Publication Date:
- NSF-PAR ID:
- 10168983
- Journal Name:
- Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
- Volume:
- 234
- Issue:
- 3
- Page Range or eLocation-ID:
- 289 to 298
- ISSN:
- 0954-4119
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This research presents an experimental program executed to understand the strength and stiffness properties of hollow built-up glass compression members that are intended for use in the modular construction of all glass, compression-dominant, shell-type structures. The proposed compression-dominant geometric form has been developed using the methods of form finding and three-dimensional graphical statics. This research takes the first steps towards a new construction methodology for glass structures where individual hollow glass units (HGU) are assembled using an interlocking system to form large, compression-dominant, shell-type structures, thereby exploiting the high compression strength of glass. In this study, an individual HGU has an elongated hexagonal prism shape and consists of two deck plates, two long side plates, and four short side plates, as is shown in Figure 1. Connections between glass plates are made using a two-sided transparent structural adhesive tape. The test matrix includes four HGUs, two each fabricated with 1 mm and 2 mm thick adhesive tape. All samples are dimensioned 64 cm on the long axis of symmetry, 51 cm on the short axis of symmetry, and are 10 cm in width. Glass plates are all 10 mm thick annealed float glass with geometric fabrication done using 5-axis abrasivemore »
-
Hydrogels are a class of soft, highly deformable materials formed by swelling a network of polymer chains in water. With mechanical properties that mimic biological materials, hydrogels are often proposed for load bearing biomedical or other applications in which their deformation and failure properties will be important. To study the failure of such materials a means for the measurement of deformation fields beyond simple uniaxial tension tests is required. As a non-contact, full-field deformation measurement method, Digital Image Correlation (DIC) is a good candidate for such studies. The application of DIC to hydrogels is studied here with the goal of establishing the accuracy of DIC when applied to hydrogels in the presence of large strains and large strain gradients. Experimental details such as how to form a durable speckle pattern on a material that is 90% water are discussed. DIC is used to measure the strain field in tension loaded samples containing a central hole, a circular edge notch and a sharp crack. Using a nonlinear, large deformation constitutive model, these experiments are modeled using the finite element method (FEM). Excellent agreement between FEM and DIC results for all three geometries shows that the DIC measurements are accurate up tomore »
-
Trabecular bone is composed of organized mineralized collagen fibrils, which results in heterogeneous and anisotropic mechanical properties at the tissue level. Recently, biomechanical models computing stresses and strains in trabecular bone have indicated a significant effect of tissue heterogeneity on predicted stresses and strains. How-ever, the effect of the tissue-level mechanical anisotropy on the trabecular bone biomechanical response is unknown. Here, a computational method was established to automatically impose physiologically relevant orientation inherent in trabecular bone tissue on a trabecular bone microscale finite element model. Spatially varying tissue-level anisotropic elastic properties were then applied according to the bone mineral density and the local tissue orientation. The model was used to test the hypothesis that anisotropy in both homogeneous and heterogeneous models alters the predicted distribution of stress invariants. Linear elastic finite element computations were performed on a 3 mm cube model isolated from a microcomputed tomography scan of human trabecular bone from the distal femur. Hydrostatic stress and von Mises equivalent stress were recorded at every element, and the distributions of these values were analyzed. Anisotropy reduced the range of hydrostatic stress in both tension and compression more strongly than the associated increase in von Mises equivalent stress. The effectmore »
-
Mechanical behavior of materials with granular microstructures is confounded by unique features of their grain-scale mechano-morphology, such as the tension–compression asymmetry of grain interactions and irregular grain structure. Continuum models, necessary for the macro-scale description of these materials, must link to the grain-scale behavior to describe the consequences of this mechano-morphology. Here, we consider the damage behavior of these materials based upon purely mechanical concepts utilizing energy and variational approach. Granular micromechanics is accounted for through Piola’s ansatz and objective kinematic descriptors obtained for grain-pair relative displacement in granular materials undergoing finite deformations. Karush–Kuhn–Tucker (KKT)-type conditions that provide the evolution equations for grain-pair damage and Euler–Lagrange equations for evolution of grain-pair relative displacement are derived based upon a non-standard (hemivariational) variational approach. The model applicability is illustrated for particular form of grain-pair elastic energy and dissipation functionals through numerical examples. Results show interesting damage-induced anisotropy evolution including the emergence of a type of chiral behavior and formation of finite localization zones.