skip to main content


Title: Polar Effects of Transposon Insertion into a Minimal Bacterial Genome
ABSTRACT Global transposon mutagenesis is a valuable tool for identifying genes required for cell viability. Here we present a global analysis of the orientation of viable Tn 5 -Puro r (Tn 5 -puromycin resistance) insertions into the near-minimal bacterial genome of JCVI-syn2.0. Sixteen of the 478 protein-coding genes show a noticeable asymmetry in the orientation of disrupting insertions of Tn 5 -Puro r . Ten of these are located in operons, upstream of essential or quasi-essential genes. Inserts transcribed in the same direction as the downstream gene are favored, permitting read-through transcription of the essential or quasi-essential gene. Some of these genes were classified as quasi-essential solely because of polar effects on the expression of downstream genes. Three genes showing asymmetry in Tn 5 -Puro r insertion orientation prefer the orientation that avoids collisions between read-through transcription of Tn 5 -Puro r and transcription of an adjacent gene. One gene (JCVISYN2_0132 [abbreviated here as “_0132”]) shows a strong preference for Tn 5 -Puro r insertions transcribed upstream, away from the downstream nonessential gene _0133. This suggested that expression of _0133 due to read-through from Tn 5 -Puro r is lethal when _0132 function is disrupted by transposon insertion. This led to the identification of genes _0133 and _0132 as a toxin-antitoxin pair. The three remaining genes show read-through transcription of Tn 5 -Puro r directed downstream and away from sizable upstream intergenic regions (199 bp to 363 bp), for unknown reasons. In summary, polar effects of transposon insertion can, in a few cases, affect the classification of genes as essential, quasi-essential, or nonessential and sometimes can give clues to gene function. IMPORTANCE In studies of the minimal genetic requirements for life, we used global transposon mutagenesis to identify genes needed for a minimal bacterial genome. Transposon insertion can disrupt the function of a gene but can also have polar effects on the expression of adjacent genes. In the Tn 5 -Puro r construct used in our studies, read-through transcription from Tn 5 -Puro r can drive expression of downstream genes. This results in a preference for Tn 5 -Puro r insertions transcribed toward a downstream essential or quasi-essential gene within the same operon. Such polar effects can have an impact on the classification of genes as essential, quasi-essential, or nonessential, but this has been observed in only a few cases. Also, polar effects of Tn 5 -Puro r insertion can sometimes give clues to gene function.  more » « less
Award ID(s):
1818344
NSF-PAR ID:
10169028
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Bacteriology
Volume:
201
Issue:
19
ISSN:
0021-9193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Segata, Nicola (Ed.)
    The understanding of bacterial gene function has been greatly enhanced by recent advancements in the deep sequencing of microbial genomes. Transposon insertion sequencing methods combines next-generation sequencing techniques with transposon mutagenesis for the exploration of the essentiality of genes under different environmental conditions. We propose a model-based method that uses regularized negative binomial regression to estimate the change in transposon insertions attributable to gene-environment changes in this genetic interaction study without transformations or uniform normalization. An empirical Bayes model for estimating the local false discovery rate combines unique and total count information to test for genes that show a statistically significant change in transposon counts. When applied to RB-TnSeq (randomized barcode transposon sequencing) and Tn-seq (transposon sequencing) libraries made in strains of Caulobacter crescentus using both total and unique count data the model was able to identify a set of conditionally beneficial or conditionally detrimental genes for each target condition that shed light on their functions and roles during various stress conditions. 
    more » « less
  2. null (Ed.)
    Abstract Background Though many plant defensins exhibit antibacterial activity, little is known about their antibacterial mode of action (MOA). Antimicrobial peptides with a characterized MOA induce the expression of multiple bacterial outer membrane modifications, which are required for resistance to these membrane-targeting peptides. Mini-Tn 5-lux mutant strains of Pseudomonas aeruginosa with Tn insertions disrupting outer membrane protective modifications were assessed for sensitivity against plant defensin peptides. These transcriptional lux reporter strains were also evaluated for lux gene expression in response to sublethal plant defensin exposure. Also, a plant pathogen, Pseudomonas syringae pv. syringae was modified through transposon mutagenesis to create mutants that are resistant to in vitro MtDef4 treatments. Results Plant defensins displayed specific and potent antibacterial activity against strains of P. aeruginosa . A defensin from Medicago truncatula , MtDef4, induced dose-dependent gene expression of the aminoarabinose modification of LPS and surface polycation spermidine production operons. The ability for MtDef4 to damage bacterial outer membranes was also verified visually through fluorescent microscopy. Another defensin from M. truncatula , MtDef5, failed to induce lux gene expression and limited outer membrane damage was detected with fluorescent microscopy. The transposon insertion site on MtDef4 resistant P. syringae pv. syringae mutants was sequenced, and modifications of ribosomal genes were identified to contribute to enhanced resistance to plant defensin treatments. Conclusions MtDef4 damages the outer membrane similar to polymyxin B, which stimulates antimicrobial peptide resistance mechanisms to plant defensins. MtDef5, appears to have a different antibacterial MOA. Additionally, the MtDef4 antibacterial mode of action may also involve inhibition of translation. 
    more » « less
  3. Bosco, Giovanni (Ed.)
    Transposable elements (TE) are selfish genetic elements that can cause harmful mutations. In Drosophila , it has been estimated that half of all spontaneous visible marker phenotypes are mutations caused by TE insertions. Several factors likely limit the accumulation of exponentially amplifying TEs within genomes. First, synergistic interactions between TEs that amplify their harm with increasing copy number are proposed to limit TE copy number. However, the nature of this synergy is poorly understood. Second, because of the harm posed by TEs, eukaryotes have evolved systems of small RNA-based genome defense to limit transposition. However, as in all immune systems, there is a cost of autoimmunity and small RNA-based systems that silence TEs can inadvertently silence genes flanking TE insertions. In a screen for essential meiotic genes in Drosophila melanogaster , a truncated Doc retrotransposon within a neighboring gene was found to trigger the germline silencing of ald , the Drosophila Mps1 homolog, a gene essential for proper chromosome segregation in meiosis. A subsequent screen for suppressors of this silencing identified a new insertion of a Hobo DNA transposon in the same neighboring gene. Here we describe how the original Doc insertion triggers flanking piRNA biogenesis and local gene silencing. We show that this local gene silencing occurs in cis and is dependent on deadlock , a component of the Rhino-Deadlock-Cutoff (RDC) complex, to trigger dual-strand piRNA biogenesis at TE insertions. We further show how the additional Hobo insertion leads to de-silencing by reducing flanking piRNA biogenesis triggered by the original Doc insertion. These results support a model of TE-mediated gene silencing by piRNA biogenesis in cis that depends on local determinants of transcription. This may explain complex patterns of off-target gene silencing triggered by TEs within populations and in the laboratory. It also provides a mechanism of sign epistasis among TE insertions, illuminates the complex nature of their interactions and supports a model in which off-target gene silencing shapes the evolution of the RDC complex. 
    more » « less
  4. As transposon sequencing (TnSeq) assays have become prolific in the microbiology field, it is of interest to scrutinize their potential drawbacks. TnSeq data consist of millions of nucleotide sequence reads that are generated by PCR amplification of transposon-genomic junctions. Reads mapping to the junctions are enumerated thus providing information on the number of transposon insertion mutations in each individual gene. Here we explore the possibility that PCR amplification of transposon insertions in a TnSeq library skews the results by introducing bias into the detection and/or enumeration of insertions. We compared the detection and frequency of mapped insertions when altering the number of PCR cycles, and when including a nested PCR, in the enrichment step. Additionally, we present nCATRAs - a novel, amplification-free TnSeq method where the insertions are enriched via CRISPR/Cas9-targeted transposon cleavage and subsequent Oxford Nanopore MinION sequencing. nCATRAs achieved 54 and 23% enrichment of the transposons and transposon-genomic junctions, respectively, over background genomic DNA. These PCR-based and PCR-free experiments demonstrate that, overall, PCR amplification does not significantly bias the results of TnSeq insofar as insertions in the majority of genes represented in our library were similarly detected regardless of PCR cycle number and whether or not PCR amplification was employed. However, the detection of a small subset of genes which had been previously described as essential is sensitive to the number of PCR cycles. We conclude that PCR-based enrichment of transposon insertions in a TnSeq assay is reliable, but researchers interested in profiling putative essential genes should carefully weigh the number of amplification cycles employed in their library preparation protocols. In addition, nCATRAs is comparable to traditional PCR-based methods (Kendall’s correlation=0.896–0.897) although the latter remain superior owing to their accessibility and high sequencing depth. 
    more » « less
  5. Summary

    From a single transgenic line harboring fiveTnt1transposon insertions, we generated a near‐saturated insertion population inMedicago truncatula. Using thermal asymmetric interlaced‐polymerase chain reaction followed by sequencing, we recovered 388 888 flanking sequence tags (FSTs) from 21 741 insertion lines in this population.FSTrecovery from 14Tnt1lines using the whole‐genome sequencing (WGS) and/orTnt1‐capture sequencing approaches suggests an average of 80 insertions per line, which is more than the previous estimation of 25 insertions. Analysis of the distribution pattern and preference ofTnt1insertions showed thatTnt1is overall randomly distributed throughout theM. truncatulagenome. At the chromosomal level,Tnt1insertions occurred on both arms of all chromosomes, with insertion frequency negatively correlated with theGCcontent. Based on 174 546 filteredFSTs that show exact insertion locations in theM. truncatulagenome version 4.0 (Mt4.0), 0.44Tnt1insertions occurred per kb, and 19 583 genes containedTnt1with an average of 3.43 insertions per gene. Pathway and gene ontology analyses revealed thatTnt1‐inserted genes are significantly enriched in processes associated with ‘stress’, ‘transport’, ‘signaling’ and ‘stimulus response’. Surprisingly, gene groups with higher methylation frequency were more frequently targeted for insertion. Analysis of 19 583Tnt1‐inserted genes revealed that 59% (1265) of 2144 transcription factors, 63% (765) of 1216 receptor kinases and 56% (343) of 616 nucleotide‐binding site‐leucine‐rich repeat genes harbored at least oneTnt1insertion, compared with the overall 38% ofTnt1‐inserted genes out of 50 894 annotated genes in the genome.

     
    more » « less