skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sliding Mode Control of an Array of Three Oscillating Water Column Wave Energy Converters to Optimize Electrical Power
This paper presents a complete mathematical model of an array of three oscillating water column (OWC) wave energy converters (WECs) and the design of a direct generator torque control strategy using a sliding mode control (SMC) to maximize the output power of doubly-fed induction generators (DFIGs) attached to bi-radial turbines that are driven by the oscillating motion of the air inside the OWC tubes. The performance of the proposed control strategy is evaluated in irregular waves scenarios and different angles of arrival of the wave front.  more » « less
Award ID(s):
1711859
PAR ID:
10169074
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the European Wave and Tidal Energy Conference
ISSN:
2309-1983
Page Range / eLocation ID:
1262-1 to 1262-10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    —Ocean wave energy is a renewable energy which remains costly for large-scale electricity generation. Although the oscillating water column (OWC) wave energy converter (WEC) is a promising device type with a rectifying air turbine and generator which convert alternating airflow induced by the water motion into kinetic energy then to electric energy, there are still several challenges to overcome to achieve commercial energy production. A first step is deploying multiple devices close to each other in WEC parks, to save cost associated with mooring lines and power transmission cables and a second step is applying control at each stage of energy conversion to increase the electric energy output of the devices and ensure a safe operation. Herein, we first present a state-space model of a park of seven hydrodynamically interacting floating OWC WECs in all degrees of freedom with nonlinear PTO dynamics and a shared, quasi-static mooring model. The electric power flow is modeled by considering the conversion losses from the AC generators over a DC link, including a storage unit to the grid connection. Secondly, the OWC WEC park is expressed from a higher hierarchical level as an automaton driven by discrete events. Finally, we use a standard supervisory control approach to enable different local control schemes to ensure a save operation of the individual WEC and the park. The supervisor has good adaptability potential for different WECs and the incorporation of safety mechanisms. 
    more » « less
  2. Optical wireless communication (OWC) shows great potential due to its broad spectrum and the exceptional intensity switching speed of LEDs. Under poor conditions, most OWC systems switch from complex and more error prone high-order modulation schemes to more robust On-Off Keying (OOK) modulation defined in the IEEE OWC standard. This paper presents LiFOD, a high-speed indoor OOK-based OWC system with fine-grained dimming support. While ensuring fine-grained dimming, LiFOD remarkably achieves robust communication at up to 400 Kbps at a distance of 6 meters. This is the first time that the data rate has improved via OWC dimming in comparison to the previous approaches that consider trading off dimming and communication. LiFOD makes two key technical contributions. First, LiFOD utilizes Compensation Symbols (CS) as a reliable side-channel to represent bit patterns dynamically and improve throughput. We firstly design greedy-based bit pattern mining. Then we propose 2D feature enhancement via YOLO model for real-time bit pattern mining. Second, LiFOD synchronously redesigns optical symbols and CS relocation schemes for fine-grained dimming and robust decoding. Experiments on low-cost Beaglebone prototypes with commercial LED lamps and the photodiode (PD) demonstrate that LiFOD significantly outperforms the state-of-the-art system with 2.1× throughput on the SIGCOMM17 data-trace. 
    more » « less
  3. An orthogonal frequency division multiplexing (OFDM) based Autoencoder (AE) model for optical wireless communication (OWC) is implemented. The symbol-error performance demonstrates the viability of using neural networks (NNs) and deep learning (DL) techniques in OWC systems. 
    more » « less
  4. Abstract—This paper presents a control co-design method for designing the mechanical power takeoff (PTO) system of a dual- flap oscillating surge wave energy converter. Unlike most existing work’s simplified representation of harvested power, this paper derives a more realistic electrical power representation based on a concise PTO modelling. This electrical power is used as the objective for PTO design optimization with energy maxi- mization control also taken into consideration to enable a more comprehensive design evaluation. A simple PI control structure speeds up the simultaneous co-optimization of control and PTO parameters, and an equivalent circuit model of the WEC not only streamlines power representation but also facilitates more insightful evaluation of the optimization results. The optimized PTO shows a large improvement in terms of power potential and actual power performance. It’s found the generator’s 
    more » « less
  5. It has been previously reported that a gaseous bubble trapped in a one-end-open tube oscillates in the presence of acoustic wave and generates strong microstreaming flows and thus a propulsion force. The propulsion highly depends on the frequency and the voltage of the external acoustic wave. This paper presents a new discovery that the direction of this propulsion is dependent on the relative location of the bubble interface. The oscillating bubble propels forward when its interface stays deep inside the tube. On the contrary, the bubble propels in a reverse direction when its interface is at the exit of the tube. Learning from this phenomenon, we developed and introduced physical structures (necks) to precisely control the location of the bubble interface. As a result, the length and interface position of the bubble is more controllable, and the bubble oscillation and propulsion becomes more predictable and consistent. 
    more » « less