skip to main content


Title: Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea
Abstract

Ammonia-oxidizing archaea (AOA) are among the most abundant and ubiquitous microorganisms in the ocean, exerting primary control on nitrification and nitrogen oxides emission. Although united by a common physiology of chemoautotrophic growth on ammonia, a corresponding high genomic and habitat variability suggests tremendous adaptive capacity. Here, we compared 44 diverse AOA genomes, 37 from species cultivated from samples collected across diverse geographic locations and seven assembled from metagenomic sequences from the mesopelagic to hadopelagic zones of the deep ocean. Comparative analysis identified seven major marine AOA genotypic groups having gene content correlated with their distinctive biogeographies. Phosphorus and ammonia availabilities as well as hydrostatic pressure were identified as selective forces driving marine AOA genotypic and gene content variability in different oceanic regions. Notably, AOA methylphosphonate biosynthetic genes span diverse oceanic provinces, reinforcing their importance for methane production in the ocean. Together, our combined comparative physiological, genomic, and metagenomic analyses provide a comprehensive view of the biogeography of globally abundant AOA and their adaptive radiation into a vast range of marine and terrestrial habitats.

 
more » « less
Award ID(s):
1756517 1664052
NSF-PAR ID:
10169141
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
14
Issue:
10
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 2595-2609
Size(s):
["p. 2595-2609"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Bowman, Jeff (Ed.)
    ABSTRACT Some marine microbes are seemingly “ubiquitous,” thriving across a wide range of environmental conditions. While the increased depth in metagenomic sequencing has led to a growing body of research on within-population heterogeneity in environmental microbial populations, there have been fewer systematic comparisons and characterizations of population-level genetic diversity over broader expanses of time and space. Here, we investigated the factors that govern the diversification of ubiquitous microbial taxa found within and between ocean basins. Specifically, we use mapped metagenomic paired reads to examine the genetic diversity of ammonia-oxidizing archaeal (“ Candidatus Nitrosopelagicus brevis”) populations in the Pacific (Hawaii Ocean Time-series [HOT]) and Atlantic (Bermuda Atlantic Time Series [BATS]) Oceans sampled over 2 years. We observed higher nucleotide diversity in “ Ca. N. brevis” at HOT, driven by a higher rate of homologous recombination. In contrast, “ Ca. N. brevis” at BATS featured a more open pangenome with a larger set of genes that were specific to BATS, suggesting a history of dynamic gene gain and loss events. Furthermore, we identified highly differentiated genes that were regulatory in function, some of which exhibited evidence of recent selective sweeps. These findings indicate that different modes of genetic diversification likely incur specific adaptive advantages depending on the selective pressures that they are under. Within-population diversity generated by the environment-specific strategies of genetic diversification is likely key to the ecological success of “ Ca. N. brevis.” IMPORTANCE Ammonia-oxidizing archaea (AOA) are one of the most abundant chemolithoautotrophic microbes in the marine water column and are major contributors to global carbon and nitrogen cycling. Despite their ecological importance and geographical pervasiveness, there have been limited systematic comparisons and characterizations of their population-level genetic diversity over time and space. Here, we use metagenomic time series from two ocean observatories to address the fundamental questions of how abiotic and biotic factors shape the population-level genetic diversity and how natural microbial populations adapt across diverse habitats. We show that the marine AOA “ Candidatus Nitrosopelagicus brevis” in different ocean basins exhibits distinct modes of genetic diversification in response to their selective regimes shaped by nutrient availability and patterns of environmental fluctuations. Our findings specific to “ Ca. N. brevis” have broader implications, particularly in understanding the population-level responses to the changing climate and predicting its impact on biogeochemical cycles. 
    more » « less
  2. ABSTRACT The Thaumarchaeota is a diverse archaeal phylum comprising numerous lineages that play key roles in global biogeochemical cycling, particularly in the ocean. To date, all genomically characterized marine thaumarchaea are reported to be chemolithoautotrophic ammonia oxidizers. In this study, we report a group of putatively heterotrophic marine thaumarchaea (HMT) with small genome sizes that is globally abundant in the mesopelagic, apparently lacking the ability to oxidize ammonia. We assembled five HMT genomes from metagenomic data and show that they form a deeply branching sister lineage to the ammonia-oxidizing archaea (AOA). We identify this group in metagenomes from mesopelagic waters in all major ocean basins, with abundances reaching up to 6% of that of AOA. Surprisingly, we predict the HMT have small genomes of ∼1 Mbp, and our ancestral state reconstruction indicates this lineage has undergone substantial genome reduction compared to other related archaea. The genomic repertoire of HMT indicates a versatile metabolism for aerobic chemoorganoheterotrophy that includes a divergent form III-a RuBisCO, a 2M respiratory complex I that has been hypothesized to increase energetic efficiency, and a three-subunit heme-copper oxidase complex IV that is absent from AOA. We also identify 21 pyrroloquinoline quinone (PQQ)-dependent dehydrogenases that are predicted to supply reducing equivalents to the electron transport chain and are among the most highly expressed HMT genes, suggesting these enzymes play an important role in the physiology of this group. Our results suggest that heterotrophic members of the Thaumarchaeota are widespread in the ocean and potentially play key roles in global chemical transformations. IMPORTANCE It has been known for many years that marine Thaumarchaeota are abundant constituents of dark ocean microbial communities, where their ability to couple ammonia oxidation and carbon fixation plays a critical role in nutrient dynamics. In this study, we describe an abundant group of putatively heterotrophic marine Thaumarchaeota (HMT) in the ocean with physiology distinct from those of their ammonia-oxidizing relatives. HMT lack the ability to oxidize ammonia and fix carbon via the 3-hydroxypropionate/4-hydroxybutyrate pathway but instead encode a form III-a RuBisCO and diverse PQQ-dependent dehydrogenases that are likely used to conserve energy in the dark ocean. Our work expands the scope of known diversity of Thaumarchaeota in the ocean and provides important insight into a widespread marine lineage. 
    more » « less
  3. Angert, Esther (Ed.)
    Abstract

    Synechococcus cyanobacteria are ubiquitous and abundant in the marine environment and contribute to an estimated 16% of the ocean net primary productivity. Their light-harvesting complexes, called phycobilisomes (PBS), are composed of a conserved allophycocyanin core, from which radiates six to eight rods with variable phycobiliprotein and chromophore content. This variability allows Synechococcus cells to optimally exploit the wide variety of spectral niches existing in marine ecosystems. Seven distinct pigment types or subtypes have been identified so far in this taxon based on the phycobiliprotein composition and/or the proportion of the different chromophores in PBS rods. Most genes involved in their biosynthesis and regulation are located in a dedicated genomic region called the PBS rod region. Here, we examine the variability of gene content and organization of this genomic region in a large set of sequenced isolates and natural populations of Synechococcus representative of all known pigment types. All regions start with a tRNA-PheGAA and some possess mobile elements for DNA integration and site-specific recombination, suggesting that their genomic variability relies in part on a “tycheposon”-like mechanism. Comparison of the phylogenies obtained for PBS and core genes revealed that the evolutionary history of PBS rod genes differs from the core genome and is characterized by the co-existence of different alleles and frequent allelic exchange. We propose a scenario for the evolution of the different pigment types and highlight the importance of incomplete lineage sorting in maintaining a wide diversity of pigment types in different Synechococcus lineages despite multiple speciation events.

     
    more » « less
  4. Abstract

    Little is known about early plastic biofilm assemblage dynamics and successional changes over time. By incubating virgin microplastics along oceanic transects and comparing adhered microbial communities with those of naturally occurring plastic litter at the same locations, we constructed gene catalogues to contrast the metabolic differences between early and mature biofilm communities. Early colonization incubations were reproducibly dominated by Alteromonadaceae and harboured significantly higher proportions of genes associated with adhesion, biofilm formation, chemotaxis, hydrocarbon degradation and motility. Comparative genomic analyses among the Alteromonadaceae metagenome assembled genomes (MAGs) highlighted the importance of the mannose‐sensitive hemagglutinin (MSHA) operon, recognized as a key factor for intestinal colonization, for early colonization of hydrophobic plastic surfaces. Synteny alignments of MSHA also demonstrated positive selection formshAalleles across all MAGs, suggesting thatmshAprovides a competitive advantage for surface colonization and nutrient acquisition. Large‐scale genomic characteristics of early colonizers varied little, despite environmental variability. Mature plastic biofilms were composed of predominantly Rhodobacteraceae and displayed significantly higher proportions of carbohydrate hydrolysis enzymes and genes for photosynthesis and secondary metabolism. Our metagenomic analyses provide insight into early biofilm formation on plastics in the ocean and how early colonizers self‐assemble, compared to mature, phylogenetically and metabolically diverse biofilms.

     
    more » « less
  5. null (Ed.)
    Synechococcus picocyanobacteria are ubiquitous and abundant photosynthetic organisms in the marine environment and contribute for an estimated 16% of the ocean net primary productivity. Their light-harvesting complexes, called phycobilisomes (PBS), are composed of a conserved allophycocyanin core from which radiates six to eight rods with variable phycobiliprotein and chromophore content. This variability allows Synechococcus to optimally exploit the wide variety of spectral niches existing in marine ecosystems. Seven distinct pigment types or subtypes have been identified so far in this taxon, based on the phycobiliprotein composition and/or the proportion of the different chromophores in PBS rods. Most genes involved in their biosynthesis and regulation are located in a dedicated genomic region called the PBS rod region. Here, we examined the variability of gene sequences and organization of this genomic region in a large set of sequenced isolates and natural populations of Synechococcus representative of all known pigment types. All regions start with a tRNA-PheGAA and some possess mobile elements including tyrosine recombinases, suggesting that their genomic plasticity relies on a tycheposon-like mechanism. Comparison of the phylogenies obtained for PBS and core genes revealed that the evolutionary history of PBS rod genes differs from the rest of the genome and is characterized by the co-existence of different alleles and frequent allelic exchange. We propose a scenario for the evolution of the different pigment types and highlight the importance of population-scale mechanisms in maintaining a wide diversity of pigment types in different Synechococcus lineages despite multiple speciation events. 
    more » « less