Abstract Coloniality may grant colony members an energetic advantage in the form of lower individual respiration rates as colony size increases. If this occurs it should be apparent as negative allometric scaling of respiration with colony size, and colonial organisms should have scaling factors < 1. However, colonial members from phylum Rotifera have yet to be examined. To test if colonial rotifers possess allometric scaling relationships between respiration rate and colony size, we measured respiration rates for four solitary and three colonial rotifer species; from these respiration rates we estimated scaling factors. We found mixed evidence for allometric scaling of respiration rate in colonial rotifers. Both rotifers with allometric scaling of respiration rate,Conochilus hippocrepisandLacinularia flosculosa, have extensive mucilaginous coverings. These coverings may represent an investment of colony members into a shared structure, lowering individual metabolic costs and thus respiratory needs. Additionally, we determined which traits are associated with allometric scaling of respiration. We compiled known scaling factors for animal phyla from a wide phylogenetic spectrum with colonial representatives and conducted a hierarchical mixed regression that included attributes of colonies. Traits associated with allometric scaling in colonial animals included colony shape, the presence of shared extrazooidal structures, and planktonic lifestyle. There are many other colonial rotifers and animal taxa for which allometric scaling factors have yet to be estimated, knowing these may enhance our understanding of the benefits of coloniality in animals.
more »
« less
Genes with evidence of positive selection as potentially related to coloniality and the evolution of morphological features among the lophophorates and entoprocts
Abstract Evolutionary mechanisms that underlie the origins of coloniality among organisms are diverse. Some animal colonies may be comprised strictly of clonal individuals formed from asexual budding or comprised of a chimera of clonal and sexually produced individuals that fuse secondarily. This investigation focuses on select members of the lophophorates and entoprocts whose evolutionary relationships remain enigmatic even in the age of genomics. Using transcriptomic data sets, two coloniality‐based hypotheses are tested in a phylogenetic context to find candidate genes showing evidence of positive selection and potentially convergent molecular signatures among solitary species and taxa‐forming colonies from aggregate groups or clonal budding. Approximately 22% of the 387 orthogroups tested showed evidence of positive selection in at least one of the three branch‐site tests (CODEML, BUSTED, and aBSREL). Only 12 genes could be reliably associated with a developmental function related to traits linked with coloniality, neuroanatomy, or ciliary fields. Genes testing for both positive selection and convergent molecular characters include orthologues of Radial spoke head,Elongation translation initiation factors,SEC13,andImmediate early response gene5. Maximum likelihood analyses included here resulted in tree topologies typical of other phylogenetic investigations based on wider genomic information. Further genomic and experimental evidence will be needed to resolve whether a solitary ancestor with multiciliated cells that formed aggregate groups gave rise to colonial forms in bryozoans (and perhaps the entoprocts) or that the morphological differences exhibited by phoronids and brachiopods represent trait modifications from a colonial ancestor.
more »
« less
- Award ID(s):
- 1744877
- PAR ID:
- 10169364
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Experimental Zoology Part B: Molecular and Developmental Evolution
- Volume:
- 336
- Issue:
- 3
- ISSN:
- 1552-5007
- Page Range / eLocation ID:
- p. 267-280
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mitri, S (Ed.)A key step in the evolutionary transition to multicellularity is the origin of multicellular groups as biological individuals capable of adaptation. Comparative work, supported by theory, suggests clonal development should facilitate this transition, although this hypothesis has never been tested in a single model system. We evolved 20 replicate populations of otherwise isogenic clonally reproducing ‘snowflake’ yeast (Δace2/∆ace2) and aggregative ‘floc’ yeast (GAL1p::FLO1 /GAL1p::FLO1) with daily selection for rapid growth in liquid media, which favors faster cell division, followed by selection for rapid sedimentation, which favors larger multicellular groups. While both genotypes adapted to this regime, growing faster and having higher survival during the group-selection phase, there was a stark difference in evolutionary dynamics. Aggregative floc yeast obtained nearly all their increased fitness from faster growth, not improved group survival; indicating that selection acted primarily at the level of cells. In contrast, clonal snowflake yeast mainly benefited from higher group-dependent fitness, indicating a shift in the level of Darwinian individuality from cells to groups. Through genome sequencing and mathematical modeling, we show that the genetic bottlenecks in a clonal life cycle also drive much higher rates of genetic drift—a result with complex implications for this evolutionary transition. Our results highlight the central role that early multicellular life cycles play in the process of multicellular adaptation.more » « less
-
Abstract Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi—the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances.more » « less
-
Abstract Background In genus Rhinolophus , species in the Rhinolophus philippinensis and R. macrotis groups are unique because the horseshoe bats in these group have relatively low echolocation frequencies and flight speeds compared with other horseshoe bats with similar body size. The different characteristics among bat species suggest particular evolutionary processes may have occurred in this genus. To study the adaptive evidence in the mitochondrial genomes (mitogenomes) of rhinolophids, especially the mitogenomes of the species with low echolocation frequencies, we sequenced eight mitogenomes and used them for comparative studies of molecular phylogeny and adaptive evolution. Results Phylogenetic analysis using whole mitogenome sequences produced robust results and provided phylogenetic signals that were better than those obtained using single genes. The results supported the recent establishment of the separate macrotis group. The signals of adaptive evolution discovered in the Rhinolophus species were tested for some of the codons in two genes ( ND2 and ND6 ) that encode NADH dehydrogenases in oxidative phosphorylation system complex I. These genes have a background of widespread purifying selection. Signals of relaxed purifying selection and positive selection were found in ND2 and ND6 , respectively, based on codon models and physicochemical profiles of amino acid replacements. However, no pronounced overlap was found for non-synonymous sites in the mitogenomes of all the species with low echolocation frequencies. A signal of positive selection for ND5 was found in the branch-site model when R. philippinensis was set as the foreground branch. Conclusions The mitogenomes provided robust phylogenetic signals that were much more informative than the signals obtained using single mitochondrial genes. Two mitochondrial genes that encoding proteins in the oxidative phosphorylation system showed some evidence of adaptive evolution in genus Rhinolophus and the positive selection signals were tested for ND5 in R. philippinensis . These results indicate that mitochondrial protein-coding genes were targets of adaptive evolution during the evolution of Rhinolophus species, which might have contributed to a diverse range of acoustic adaptations in this genus.more » « less
-
Abstract Convergent evolution is often documented in organisms inhabiting isolated environments with distinct ecological conditions and similar selective regimes. Several Central America islands harbor dwarf Boa populations that are characterized by distinct differences in growth, mass, and craniofacial morphology, which are linked to the shared arboreal and feast-famine ecology of these island populations. Using high-density RADseq data, we inferred three dwarf island populations with independent origins and demonstrate that selection, along with genetic drift, has produced both divergent and convergent molecular evolution across island populations. Leveraging whole-genome resequencing data for 20 individuals and a newly annotated Boa genome, we identify four genes with evidence of phenotypically relevant protein-coding variation that differentiate island and mainland populations. The known roles of these genes involved in body growth (PTPRS, DMGDH, and ARSB), circulating fat and cholesterol levels (MYLIP), and craniofacial development (DMGDH and ARSB) in mammals link patterns of molecular evolution with the unique phenotypes of these island forms. Our results provide an important genome-wide example for quantifying expectations of selection and convergence in closely related populations. We also find evidence at several genomic loci that selection may be a prominent force of evolutionary change—even for small island populations for which drift is predicted to dominate. Overall, while phenotypically convergent island populations show relatively few loci under strong selection, infrequent patterns of molecular convergence are still apparent and implicate genes with strong connections to convergent phenotypes.more » « less
An official website of the United States government
