skip to main content

Title: Plasmonic Nanobiosensing: from in situ plant monitoring to cancer diagnostics at the point of care

Nucleic acid biosensing technologies have the capability to provide valuable information in applications ranging from medical diagnostics to environmental sensing. The unique properties of plasmonic metallic nanoparticles have been used for sensing purposes and among them, plasmonic sensors based on surface-enhanced Raman scattering (SERS) offer the advantages of sensitive and muliplexed detection owing to the narrow bandwidth of their characteristic Raman spectral features. This paper describes current applications that employ the unique SERS-based inverse molecular sentinel (iMS) nanobiosensors developed in our laboratory. Herein, we demonstrate the use of label-free iMS nanoprobes for detecting specific nucleic acid biomarkers in a wide variety of applications from cancer diagnostics to genetic monitoring for plant biology in renewable biofuel research.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Photonics
Page Range / eLocation ID:
Article No. 034012
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With arms radiating from a central core, gold nanostars represent a unique and fascinating class of nanomaterials from which extraordinary plasmonic properties are derived. Despite their relevance to sensing applications, methods for fabricating homogeneous populations of nanostars on large-area planar surfaces in truly periodic arrays is lacking. Herein, the fabrication of nanostar arrays is demonstrated through the formation of hexagonal patterns of near-hemispherical gold seeds and their subsequent exposure to a liquid-state chemical environment that is conducive to colloidal nanostar formation. Three different colloidal nanostar protocols were targeted where HEPES, DMF, and ascorbic acid represent a key reagent in their respective redox chemistries. Only the DMF-driven synthesis proved readily adaptable to the substrate-based platform but nanostar-like structures emerged from the other protocols when synthetic controls such as reaction kinetics, the addition of Ag + ions, and pH adjustments were applied. Because the nanostars were derived from near-hemispherical seeds, they acquired a unique geometry that resembles a conventional nanostar that has been truncated near its midsection. Simulations of plasmonic properties of this geometry reveal that such structures can exhibit maximum near-field intensities that are as much as seven-times greater than the standard nanostar geometry, a finding that is corroborated by surface-enhanced Raman scattering (SERS) measurements showing large enhancement factors. The study adds nanostars to the library of nanostructure geometries that are amenable to large-area periodic arrays and provides a potential pathway for the nanofabrication of SERS substrates with even greater enhancements. 
    more » « less
  2. Plasmonic nanoparticles (NPs) have garnered excitement over the past several decades stemming from their unique optoelectronic properties, leading to their use in various sensing applications and theranostics. Symmetry dictates the properties of many nanomaterials, and nanostructures with low, but still defined symmetries, often display markedly different properties compared to their higher symmetry counterparts. While numerous methods are available to manipulate symmetry, surface protecting groups such as polymers are finding use due to their ability to achieve regioselective modification of NP seeds, which can be removed after overgrowth as shown here. Specifically, poly(styrene- b -polyacrylic acid) (PSPAA) is used to asymmetrically passivate cubic Au seeds through competition with hexadecyltrimethylammonium bromide (CTAB) ligands. The asymmetric passivation via collapsed PSPAA causes only select vertices and faces of the Au cubes to be available for deposition of new material ( i.e. , Au, Au–Ag alloy, and Au–Pd alloy) during seeded overgrowth. At low metal precursor concentrations, deposition follows observations from unpassivated seeds but with new material growing from only the exposed seed portions. At high metal precursor concentrations, nanobowl-like structures form from interaction between the depositing phase and the passivating PSPAA. Through experiment and simulation, the optoelectronic properties of these nanobowls were probed, finding that the interiors and exteriors of the nanobowls can be functionalized selectively as revealed by surface enhanced Raman spectroscopy (SERS). 
    more » « less
  3. null (Ed.)
    Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH i ) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH i change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH e ) change. The HeLa cancer cells can better resist pH e change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers. 
    more » « less
  4. Abstract

    Nanoparticle‐based nucleic acid conjugates (NP‐NACs) hold great promise for theragnostic applications. However, several limitations have hindered the realization of their full potential in the clinical treatment of cancer and other diseases. In diagnoses, NP‐NACs suffer from low signal‐to‐noise ratios, while the efficiency of NP‐NACs‐mediated cancer therapies has been limited by the adaptation of alternative prosurvival pathways in cancer cells. The recent emergence of personalized and precision medicine has outlined the importance of having both accurate diagnosis and efficient therapeutics in a single platform. As such, the controlled assembly of hybrid graphene oxide/gold nanoparticle (Au@GO NP)‐based cancer‐specific NACs (Au@GO NP‐NACs) for multimodal imaging and combined therapeutics is reported. The developed Au@GO NP‐NACs show excellent surface‐enhanced Raman scattering (SERS)‐mediated live‐cell cancer detection and multimodal synergistic cancer therapy through the use of photothermal, genetic, and chemotherapeutic strategies. Synergistic and selective killing of cancer cells are then demonstrated using in vitro microfluidic models. Moreover, with the distinctive advantages of the Au@GO NP‐NACs for cancer theragnostics, precision cancer treatment through the detection of cancer cells in vivo using SERS followed by efficient ablation of tumors is shown. Therefore, the Au@GO NP‐NACs can pave a new road for advanced disease theragnostics.

    more » « less
  5. Abstract

    Two‐dimensional transition metal dichalcogenides (TMDs)/graphene van der Waals (vdW) heterostructures integrate the superior light–solid interaction in TMDs and charge mobility in graphene, and therefore are promising for surface‐enhanced Raman spectroscopy (SERS). Herein, a novel TMD (MoS2and WS2) nanodome/graphene vdW heterostructure SERS substrate, on which an extraordinary SERS sensitivity is achieved, is reported. Using fluorescent Rhodamine 6G (R6G) as probe molecules, the SERS sensitivity is in the range of 10−11to 10−12mon the TMD nanodomes/graphene vdW heterostructure substrates using 532 nm Raman excitation, which is comparable to the best sensitivity reported so far using plasmonic metal nanostructures/graphene SERS substrates, and is more than three orders of magnitude higher than that on single‐layer TMD and graphene substrates. Density functional theory simulation reveals enhanced electric dipole moments and dipole–dipole interaction at the TMD/graphene vdW interface, yielding an effective means to facilitate an external electrostatic perturbation on the graphene surface and charge transfer. This not only promotes chemical enhancement on SERS, but also enables electromagnetic enhancement of SERS through the excitation of localized surface plasmonic resonance on the TMD nanodomes. This TMD nanodome/graphene vdW heterostructure is therefore promising for commercial applications in high‐performance optoelectronics and sensing.

    more » « less