- Award ID(s):
- 1910794
- PAR ID:
- 10169403
- Date Published:
- Journal Name:
- International Conference on Machine Learning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The exploitation of extra state information has been an active research area in multi-agent reinforcement learning (MARL). QMIX represents the joint action-value using a non-negative function approximator and achieves the best performance on the StarCraft II micromanagement testbed, a common MARL benchmark. However, our experiments demonstrate that, in some cases, QMIX performs sub-optimally with the A2C framework, a training paradigm that promotes algorithm training efficiency. To obtain a reasonable trade-off between training efficiency and algorithm performance, we extend value-decomposition to actor-critic methods that are compatible with A2C and propose a novel actor-critic framework, value-decomposition actor-critic (VDAC). We evaluate VDAC on the StarCraft II micromanagement task and demonstrate that the proposed framework improves median performance over other actor-critic methods. Furthermore, we use a set of ablation experiments to identify the key factors that contribute to the performance of VDAC.more » « less
-
The exploitation of extra state information has been an active research area in multi-agent reinforcement learning (MARL). QMIX represents the joint action-value using a non-negative function approximator and achieves the best performance on the StarCraft II micromanagement testbed, a common MARL benchmark. However, our experiments demonstrate that, in some cases, QMIX performs sub-optimally with the A2C framework, a training paradigm that promotes algorithm training efficiency. To obtain a reasonable trade-off between training efficiency and algorithm performance, we extend value-decomposition to actor-critic methods that are compatible with A2C and propose a novel actor-critic framework, value-decomposition actor-critic (VDAC). We evaluate VDAC on the StarCraft II micromanagement task and demonstrate that the proposed framework improves median performance over other actor-critic methods. Furthermore, we use a set of ablation experiments to identify the key factors that contribute to the performance of VDAC.more » « less
-
In partially observable reinforcement learning, offline training gives access to latent information which is not available during online training and/or execution, such as the system state. Asymmetric actor-critic methods exploit such information by training a history-based policy via a state-based critic. However, many asymmetric methods lack theoretical foundation, and are only evaluated on limited domains. We examine the theory of asymmetric actor-critic methods which use state-based critics, and expose fundamental issues which undermine the validity of a common variant, and limit its ability to address partial observability. We propose an unbiased asymmetric actor-critic variant which is able to exploit state information while remaining theoretically sound, maintaining the validity of the policy gradient theorem, and introducing no bias and relatively low variance into the training process. An empirical evaluation performed on domains which exhibit significant partial observability confirms our analysis, demonstrating that unbiased asymmetric actor-critic converges to better policies and/or faster than symmetric and biased asymmetric baselines.more » « less
-
Summary This article presents a novel actor‐critic‐barrier structure for the multiplayer safety‐critical systems. Non‐zero‐sum (NZS) games with full‐state constraints are first transformed into unconstrained NZS games using a barrier function. The barrier function is capable of dealing with both symmetric and asymmetric constraints on the state. It is shown that the Nash equilibrium of the unconstrained NZS guarantees to stabilize the original multiplayer system. The barrier function is combined with an actor‐critic structure to learn the Nash equilibrium solution in an online fashion. It is shown that integrating the barrier function with the actor‐critic structure guarantees that the constraints will not be violated during learning. Boundedness and stability of the closed‐loop signals are analyzed. The efficacy of the presented approach is finally demonstrated by using a simulation example.
-
Policy gradient methods have become popular in multi-agent reinforcement learning, but they suffer from high variance due to the presence of environmental stochasticity and exploring agents (i.e., non-stationarity), which is potentially worsened by the difficulty in credit assignment. As a result, there is a need for a method that is not only capable of efficiently solving the above two problems but also robust enough to solve a variety of tasks. To this end, we propose a new multi-agent policy gradient method, called Robust Local Advantage (ROLA) Actor-Critic. ROLA allows each agent to learn an individual action-value function as a local critic as well as ameliorating environment non-stationarity via a novel centralized training approach based on a centralized critic. By using this local critic, each agent calculates a baseline to reduce variance on its policy gradient estimation, which results in an expected advantage action-value over other agents’ choices that implicitly improves credit assignment. We evaluate ROLA across diverse benchmarks and show its robustness and effectiveness over a number of state-of-the-art multi-agent policy gradient algorithms.more » « less