skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Rule-based Explanatory Models From Exploratory Multi-simulation For Decision-support Under Uncertainty
Exploratory modeling and simulation is an effective strategy when there are substantial contextual uncertainty and representational ambiguity in problem formulation. However, two significant challenges impede the use of an ensemble of models in exploratory simulation. The first challenge involves streamlining the maintenance and synthesis of multiple models from plausible features that are identified from and subject to the constraints of the research hypothesis. The second challenge is making sense of the data generated by multi-simulation over a model ensemble. To address both challenges, we introduce a computational framework that integrates feature-driven variability management with an anticipatory learning classifier system to generate explanatory rules from multi-simulation data.  more » « less
Award ID(s):
1910794
PAR ID:
10169475
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 2020 Winter Simulation Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Modelling of cardiac electrical behaviour has led to important mechanistic insights, but important challenges, including uncertainty in model formulations and parameter values, make it difficult to obtain quantitatively accurate results. An alternative approach is combining models with observations from experiments to produce a data-informed reconstruction of system states over time. Here, we extend our earlier data-assimilation studies using an ensemble Kalman filter to reconstruct a three-dimensional time series of states with complex spatio-temporal dynamics using only surface observations of voltage. We consider the effects of several algorithmic and model parameters on the accuracy of reconstructions of known scroll-wave truth states using synthetic observations. In particular, we study the algorithm’s sensitivity to parameters governing different parts of the process and its robustness to several model-error conditions. We find that the algorithm can achieve an acceptable level of error in many cases, with the weakest performance occurring for model-error cases and more extreme parameter regimes with more complex dynamics. Analysis of the poorest-performing cases indicates an initial decrease in error followed by an increase when the ensemble spread is reduced. Our results suggest avenues for further improvement through increasing ensemble spread by incorporating additive inflation or using a parameter or multi-model ensemble. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’. 
    more » « less
  2. Predictive modeling of clinical time series data is challenging due to various factors. One such difficulty is the existence of missing values, which leads to irregular data. Another challenge is capturing correlations across multiple dimensions in order to achieve accurate predictions. Additionally, it is essential to take into account the temporal structure, which includes both short-term and long-term recurrent patterns, to gain a comprehensive understanding of disease progression and to make accurate predictions for personalized healthcare. In critical situations, models that can make multi-step ahead predictions are essential for early detection. This review emphasizes the need for forecasting models that can effectively address the aforementioned challenges. The selection of models must also take into account the data-related constraints during the modeling process. Time series models can be divided into statistical, machine learning, and deep learning models. This review concentrates on the main models within these categories, discussing their capability to tackle the mentioned challenges. Furthermore, this paper provides a brief overview of a technique aimed at mitigating the limitations of a specific model to enhance its suitability for clinical prediction. It also explores ensemble forecasting methods designed to merge the strengths of various models while reducing their respective weaknesses, and finally discusses hierarchical models. Apart from the technical details provided in this document, there are certain aspects in predictive modeling research that have arisen as possible obstacles in implementing models using biomedical data. These obstacles are discussed leading to the future prospects of model building with artificial intelligence in healthcare domain. 
    more » « less
  3. Data- and model-driven computer simulations are increasingly critical in many application domains. Yet, several critical data challenges remain in obtaining and leveraging simulations in decision making. Simulations may track 100s of parameters, spanning multiple layers and spatial-temporal frames, affected by complex inter-dependent dynamic processes. Moreover, due to the large numbers of unknowns, decision makers usually need to generate ensembles of stochastic realizations, requiring 10s-1000s of individual simulation instances. The situation on the ground evolves unpredictably, requiring continuously adaptive simulation ensembles. We introduce the DataStorm framework for simulation ensemble management, and demonstrate its DataStorm-FE data- and decision-flow and coordination engine for creating and maintaining coupled, multi-model simulation ensembles. DataStorm-FE enables end-to-end ensemble planning and optimization, including parameter-space sampling, output aggregation and alignment, and state and provenance data management, to improve the overall simulation process. It also aims to work efficiently, producing results while working within a limited simulation budget, and incorporates a multivariate, spatiotemporal data browser to empower decision-making based on these improved results. 
    more » « less
  4. Visualization is an essential tool for analysis of data and communication of findings in the sciences, and the Earth System Sciences (ESS) are no exception. However, within ESS, specialized visualization requirements and data models, particularly for those data arising from numerical models, often make general purpose visualization packages difficult, if not impossible, to use effectively. This paper presents VAPOR: a domain-specific visualization package that targets the specialized needs of ESS modelers, particularly those working in research settings where highly-interactive exploratory visualization is beneficial. We specifically describe VAPOR’s ability to handle ESS simulation data from a wide variety of numerical models, as well as a multi-resolution representation that enables interactive visualization on very large data while using only commodity computing resources. We also describe VAPOR’s visualization capabilities, paying particular attention to features for geo-referenced data and advanced rendering algorithms suitable for time-varying, 3D data. Finally, we illustrate VAPOR’s utility in the study of a numerically- simulated tornado. Our results demonstrate both ease-of-use and the rich capabilities of VAPOR in such a use case. 
    more » « less
  5. Accurately forecasting Arctic sea ice from sub- seasonal to seasonal scales has been a major scientific effort with fundamental challenges at play. In addition to physics-based earth system models, researchers have been applying multiple statistical and machine learning models for sea ice forecast- ing. Looking at the potential of data-driven sea ice forecasting, we propose an attention-based Long Short Term Memory (LSTM) ensemble method to predict monthly sea ice extent up to 1 month ahead. Using daily and monthly satellite retrieved sea ice data from NSIDC and atmospheric and oceanic variables from ERA5 reanalysis product for 39 years, we show that our multi-temporal ensemble method outperforms several baseline and recently proposed deep learning models. This will substantially improve our ability in predicting future Arctic sea ice changes, which is fundamental for forecasting transporting routes, resource development, coastal erosion, threats to Arctic coastal communities and wildlife. 
    more » « less