- Award ID(s):
- 1907208
- Publication Date:
- NSF-PAR ID:
- 10169671
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 493
- Issue:
- 1
- Page Range or eLocation-ID:
- 1227 to 1248
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We have modeled the velocity-resolved reverberation response of the H β broad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic Nucleus (AGN) Monitoring Project 2016 sample, drawing inferences on the geometry and structure of the low-ionization broad-line region (BLR) and the mass of the central supermassive black hole. Overall, we find that the H β BLR is generally a thick disk viewed at low to moderate inclination angles. We combine our sample with prior studies and investigate line-profile shape dependence, such as log 10 ( FWHM / σ ) , on BLR structure and kinematics and search for any BLR luminosity-dependent trends. We find marginal evidence for an anticorrelation between the profile shape of the broad H β emission line and the Eddington ratio, when using the rms spectrum. However, we do not find any luminosity-dependent trends, and conclude that AGNs have diverse BLR structure and kinematics, consistent with the hypothesis of transient AGN/BLR conditions rather than systematic trends.
-
Abstract We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities of
λ L λ (5100 Å) ≈ 1044erg s−1and predicted Hβ lags of ∼20–30 days or black hole masses of 107–108.5M ⊙, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβ emission-line light curves, integrated Hβ lag times (8–30 days) measured againstV -band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβ components, and virial black hole mass estimates (107.1–108.1M ⊙). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample. -
Abstract We perform a systematic survey of active galactic nuclei (AGNs) continuum lags using ∼3 days cadence gri -band light curves from the Zwicky Transient Facility. We select a sample of 94 type 1 AGNs at z < 0.8 with significant and consistent inter-band lags based on the interpolated cross-correlation function method and the Bayesian method JAVELIN . Within the framework of the “lamp-post” reprocessing model, our findings are: (1) The continuum emission (CE) sizes inferred from the data are larger than the disk sizes predicted by the standard thin-disk model. (2) For a subset of the sample, the CE size exceeds the theoretical limit of the self-gravity radius (12 lt-days) for geometrically thin disks. (3) The CE size scales with continuum luminosity as R CE ∝ L 0.48±0.04 with a scatter of 0.2 dex, analogous to the well-known radius–luminosity relation of broad H β . These findings suggest a significant contribution of diffuse continuum emission from the broad-line region (BLR) to AGN continuum lags. We find that the R CE – L relation can be explained by a photoionization model that assumes ∼23% of the total flux comes from the diffuse BLR emission. In addition, the ratio of themore »
-
ABSTRACT Understanding the radiative and physical structures of inner region of a few 100 pc of active galactic nucleus (AGNs) is important to constrain the causes of their activities. Although the X-ray emission from the Comptonization region/corona and the accretion disc regulates the broad-line emission regions and torus structures, the exact mutual dependency is not understood well. We performed correlation studies for X-ray, mid-infrared, and different components of Balmer emission lines for the selected sample of AGNs. Almost 10 different parameters and their interdependencies were explored in order to understand the underlying astrophysics. We found that the X-ray luminosity has a linear dependency on the various components of broad Balmer emission lines (e.g. L$_{\text{2-10 keV}}\, \propto$ L$^{0.78}_{\text{H}\beta ^{\text{B}}}$) and found a strong dependency on the optical continuum luminosity (L$_{\text{2-10 keV}}\, \propto$ L$^{0.86}_{5100\, \mathring{\rm A}}$). For a selected sample, we also observed a linear dependency between X-ray and mid-infrared luminosity (L$_{\text{2-10 keV}}\, \propto$ L$^{0.74}_{6\, \mu \text{m}}$). A break point was observed in our correlation studies for X-ray power-law index, Γ, and mass of black hole at ∼ log (M/M⊙) = 8.95. Similarly, the relations between Γ and full width at half-maximum (FWHM) of H α and H β broad components show breaks at FWHMH α = 7642 ± 657 km s−1more »
-
Using VLTI/GRAVITY and SINFONI data, we investigate the subparsec gas and dust structure around the nearby type 1 active galactic nucleus (AGN) hosted by NGC 3783. The K -band coverage of GRAVITY uniquely allows simultaneous analysis of the size and kinematics of the broad line region (BLR), the size and structure of the near-infrared(near-IR)-continuum-emitting hot dust, and the size of the coronal line region (CLR). We find the BLR, probed through broad Br γ emission, to be well described by a rotating, thick disc with a radial distribution of clouds peaking in the inner region. In our BLR model, the physical mean radius of 16 light-days is nearly twice the ten-day time-lag that would be measured, which closely matches the ten-day time-lag that has been measured by reverberation mapping. We measure a hot dust full-width at half-maximum (FWHM) size of 0.74 mas (0.14 pc) and further reconstruct an image of the hot dust, which reveals a faint (5% of the total flux) offset cloud that we interpret as an accreting or outflowing cloud heated by the central AGN. Finally, we directly measure the FWHM size of the nuclear CLR as traced by the [Ca VIII ] and narrow Br γmore »