skip to main content


Title: Rescuing Logic Encryption in Post-SAT Era by Locking & Obfuscation
The active participation of external entities in the manufacturing flow has produced numerous hardware security issues in which piracy and overproduction are likely to be the most ubiquitous and expensive ones. The main approach to prevent unauthorized products from functioning is logic encryption that inserts key-controlled gates to the original circuit in a way that the valid behavior of the circuit only happens when the correct key is applied. The challenge for the security designer is to ensure neither the correct key nor the original circuit can be revealed by different analyses of the encrypted circuit. However, in state-of-the-art logic encryption works, a lot of performance is sold to guarantee security against powerful logic and structural attacks. This contradicts the primary reason of logic encryption that is to protect a precious design from being pirated and overproduced. In this paper, we propose a bilateral logic encryption platform that maintains high degree of security with small circuit modification. The robustness against exact and approximate attacks is also demonstrated.  more » « less
Award ID(s):
1651695
NSF-PAR ID:
10169682
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Design, Automation, Testing in Europe (DATE)
Page Range / eLocation ID:
13 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Logic encryption is a powerful hardware protection technique that uses extra key inputs to lock a circuit from piracy or unauthorized use. The recent discovery of the SAT-based attack with Distinguishing Input Pattern (DIP) generation has rendered all traditional logic encryptions vulnerable, and thus the creation of new encryption methods. However, a critical question for any new encryption method is whether security against the DIP-generation attack means security against all other attacks. In this paper, a new high-level SAT-based attack called SigAttack has been discovered and thoroughly investigated. It is based on extracting a key-revealing signature in the encryption. A majority of all known SAT-resilient encryptions are shown to be vulnerable to SigAttack. By formulating the condition under which SigAttack is effective, the paper also provides guidance for the future logic encryption design. 
    more » « less
  2. Logic encryption is a hardware security technique that uses extra key inputs to prevent unauthorized use of a circuit. With the discovery of the SAT-based attack, new encryption techniques such as SARLock and Anti-SAT are proposed, and further combined with traditional logic encryption techniques, to guarantee both high error rates and resilience to the SAT-based attack. In this paper, the SAT-based bit-flipping attack is presented. It first separates the two groups of keys via SAT-based bit-flippings, and then attacks the traditional encryption and the SAT-resilient encryption, by conventional SAT-based attack and by-passing attack, respectively. The experimental results show that the bit-flipping attack successfully returns a circuit with the correct functionality and significantly reduces the execution time compared with other advanced attacks. 
    more » « less
  3. With the rapid evolution of the IC supply chain, circuit IP protection has become a critical realistic issue for the semiconductor industry. One promising technique to resolve the issue is logic locking. It adds key inputs to the original circuit such that only authorized users can get the correct function, and it modifies the circuit to obfuscate it against structural analysis. However, there is a trilemma among locking, obfuscation, and efficiency within all existing logic locking methods that at most two of the objectives can be achieved. In this work, we propose ObfusLock, the first logic locking method that simultaneously achieves all three objectives: locking security, obfuscation safety, and locking efficiency. ObfusLock is based on solid mathematical proofs, incurs small overheads (<5% on average), and has passed experimental tests of various existing attacks. 
    more » « less
  4. Due to outsource manufacturing, the semiconductor industry must deal with various hardware threats such as piracy and overproduction. To prevent illegal electronic products from functioning, the circuit can be encrypted using a protected key only known to the designer. However, an attacker can still decipher the secret key utilizing a functioning circuit bought from the market, and the encrypted layout leaked from an untrusted foundry. In this paper, after introducing essential conformity and mutuality features for secure logic encryption, we propose DLE, a novel Distributed Logic Encryption design that resists against all known oracle guided and structural attacks including the newly proposed fault-aided SAT-based attack that iteratively injects a single stuck-at fault to thwart the locking effect. DLE forces the attacker to insert multiple stuck-at faults simultaneously in critical points to achieve a smaller but meaningful encrypted circuit; thus, exponentially reducing the chance to hit all the critical points with properly located stuck-at fault injections. Our experiments confirm that DLE maintains an exponentially high degree of security under diverse attacks with the polynomial area and linear performance overheads. 
    more » « less
  5. Prevention of integrated circuit counterfeiting through logic locking faces the fundamental challenge of securing an obfuscation key against both physical and algorithmic threats. Previous work has focused on strengthening the logic encryption to protect the key against algorithmic attacks, but failed to provide adequate physical security. In this work, we propose a logic locking scheme that leverages the non-volatility of the nanomagnet logic (NML) family to achieve both physical and algorithmic security. Polymorphic NML minority gates protect the obfuscation key against algorithmic attacks, while a strain-inducing shield surrounding the nanomagnets provides physical security via a self-destruction mechanism. 
    more » « less