skip to main content


Title: Identification of the expressome by machine learning on omics data
Accurate annotation of plant genomes remains complex due to the presence of many pseudogenes arising from whole-genome duplication-generated redundancy or the capture and movement of gene fragments by transposable elements. Machine learning on genome-wide epigenetic marks, informed by transcriptomic and proteomic training data, could be used to improve annotations through classification of all putative protein-coding genes as either constitutively silent or able to be expressed. Expressed genes were subclassified as able to express both mRNAs and proteins or only RNAs, and CG gene body methylation was associated only with the former subclass. More than 60,000 protein-coding genes have been annotated in the reference genome of maize inbred B73. About two-thirds of these genes are transcribed and are designated the filtered gene set (FGS). Classification of genes by our trained random forest algorithm was accurate and relied only on histone modifications or DNA methylation patterns within the gene body; promoter methylation was unimportant. Other inbred lines are known to transcribe significantly different sets of genes, indicating that the FGS is specific to B73. We accurately classified the sets of transcribed genes in additional inbred lines, arising from inbred-specific DNA methylation patterns. This approach highlights the potential of using chromatin information to improve annotations of functional genes.  more » « less
Award ID(s):
1711662
NSF-PAR ID:
10169746
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
36
ISSN:
0027-8424
Page Range / eLocation ID:
18119 to 18125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background The tobacco thrips ( Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips ( Thrips palmi Karny) and the western flower thrips ( Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. Results A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis . Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species’ genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis . Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella , but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. Conclusions The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status. 
    more » « less
  2. Abstract

    Transcript-based annotations of genes facilitate both genome-wide analyses and detailed single-locus research. In contrast, transposable element (TE) annotations are rudimentary, consisting of information only on TE location and type. The repetitiveness and limited annotation of TEs prevent the ability to distinguish between potentially functional expressed elements and degraded copies. To improve genome-wide TE bioinformatics, we performed long-read sequencing of cDNAs from Arabidopsis (Arabidopsis thaliana) lines deficient in multiple layers of TE repression. These uniquely mapping transcripts were used to identify the set of TEs able to generate polyadenylated RNAs and create a new transcript-based annotation of TEs that we have layered upon the existing high-quality community standard annotation. We used this annotation to reduce the bioinformatic complexity associated with multimapping reads from short-read RNA sequencing experiments, and we show that this improvement is expanded in a TE-rich genome such as maize (Zea mays). Our TE annotation also enables the testing of specific standing hypotheses in the TE field. We demonstrate that inaccurate TE splicing does not trigger small RNA production, and the cell more strongly targets DNA methylation to TEs that have the potential to make mRNAs. This work provides a transcript-based TE annotation for Arabidopsis and maize, which serves as a blueprint to reduce the bioinformatic complexity associated with repetitive TEs in any organism.

     
    more » « less
  3. Summary

    Maize (Zea maysL.), a model species for genetic studies, is one of the two most important crop species worldwide. The genome sequence of the reference genotype, B73, representative of the stiff stalk heterotic group was recently updated (AGPv4) using long‐read sequencing and optical mapping technology. To facilitate the use ofAGPv4 and to enable functional genomic studies and association of genotype with phenotype, we determined expression abundances for replicatedmRNA‐sequencing datasets from 79 tissues and five abiotic/biotic stress treatments revealing 36 207 expressed genes. Characterization of the B73 transcriptome across six organs revealed 4154 organ‐specific and 7704 differentially expressed (DE) genes following stress treatment. Gene co‐expression network analyses revealed 12 modules associated with distinct biological processes containing 13 590 genes providing a resource for further association of gene function based on co‐expression patterns. Presence−absence variants (PAVs) previously identified using whole genome resequencing data from 61 additional inbred lines were enriched in organ‐specific and stress‐induced DE genes suggesting thatPAVs may function in phenological variation and adaptation to environment. Relative to core genes conserved across the 62 profiled inbreds,PAVs have lower expression abundances which are correlated with their frequency of dispersion across inbreds and on average have significantly fewer co‐expression network connections suggesting that a subset ofPAVs may be on an evolutionary path to pseudogenization. To facilitate use by the community, we developed the Maize Genomics Resource website (maize.plantbiology.msu.edu) for viewing and data‐mining these resources and deployed two new views on the maize electronic Fluorescent Pictograph Browser (bar.utoronto.ca/efp_maize).

     
    more » « less
  4. Abstract Background

    The maize inbred line A188 is an attractive model for elucidation of gene function and improvement due to its high embryogenic capacity and many contrasting traits to the first maize reference genome, B73, and other elite lines. The lack of a genome assembly of A188 limits its use as a model for functional studies.

    Results

    Here, we present a chromosome-level genome assembly of A188 using long reads and optical maps. Comparison of A188 with B73 using both whole-genome alignments and read depths from sequencing reads identify approximately 1.1 Gb of syntenic sequences as well as extensive structural variation, including a 1.8-Mb duplication containing the Gametophyte factor1 locus for unilateral cross-incompatibility, and six inversions of 0.7 Mb or greater. Increased copy number of carotenoid cleavage dioxygenase 1 (ccd1) in A188 is associated with elevated expression during seed development. Highccd1expression in seeds together with low expression of yellow endosperm 1 (y1) reduces carotenoid accumulation, accounting for the white seed phenotype of A188. Furthermore, transcriptome and epigenome analyses reveal enhanced expression of defense pathways and altered DNA methylation patterns of the embryonic callus.

    Conclusions

    The A188 genome assembly provides a high-resolution sequence for a complex genome species and a foundational resource for analyses of genome variation and gene function in maize. The genome, in comparison to B73, contains extensive intra-species structural variations and other genetic differences. Expression and network analyses identify discrete profiles for embryonic callus and other tissues.

     
    more » « less
  5. Bomblies, K (Ed.)
    Abstract

    DNA methylation in plants is depleted from cis-regulatory elements in and near genes but is present in some gene bodies, including exons. Methylation in exons solely in the CG context is called gene body methylation (gbM). Methylation in exons in both CG and non-CG contexts is called TE-like methylation (teM). Assigning functions to both forms of methylation in genes has proven to be challenging. Toward that end, we utilized recent genome assemblies, gene annotations, transcription data, and methylome data to quantify common patterns of gene methylation and their relations to gene expression in maize. We found that gbM genes exist in a continuum of CG methylation levels without a clear demarcation between unmethylated genes and gbM genes. Analysis of expression levels across diverse maize stocks and tissues revealed a weak but highly significant positive correlation between gbM and gene expression except in endosperm. gbM epialleles were associated with an approximately 3% increase in steady-state expression level relative to unmethylated epialleles. In contrast to gbM genes, which were conserved and were broadly expressed across tissues, we found that teM genes, which make up about 12% of genes, are mainly silent, are poorly conserved, and exhibit evidence of annotation errors. We used these data to flag teM genes in the 26 NAM founder genome assemblies. While some teM genes are likely functional, these data suggest that the majority are not, and their inclusion can confound the interpretation of whole-genome studies.

     
    more » « less