skip to main content


Title: Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in Helicobacter pylori
Round spheres, straight rods, and twisting corkscrews, bacteria come in many different shapes. The shape of bacteria is dictated by their cell wall, the strong outer barrier of the cell. As bacteria grow and multiply, they must add to their cell wall while keeping the same basic shape. The cells walls are made from long chain-like molecules via processes that are guided by protein scaffolds within the cell. Many common antibiotics, including penicillin, stop bacterial infections by interrupting the growth of cell walls. Helicobacter pylori is a common bacterium that lives in the gut and, after many years, can cause stomach ulcers and stomach cancer. H. pylori are shaped in a twisting helix, much like a corkscrew. This shape helps H. pylori to take hold and colonize the stomach. It remains unclear how H. pylori creates and maintains its helical shape. The helix is much more curved than other bacteria, and H. pylori does not have the same helpful proteins that other curved bacteria do. If H. pylori grows asymmetrically, adding more material to the cell wall on its long outer side to create a twisting helix, what controls the process? To find out, Taylor et al. grew H. pylori cells and watched how the cell walls took shape. First, a fluorescent dye was attached to the building blocks of the cell wall or to underlying proteins that were thought to help direct its growth. The cells were then imaged in 3D, and images from hundreds of cells were reconstructed to analyze the growth patterns of the bacteria’s cell wall. A protein called CcmA was found most often on the long side of the twisting H. pylori. When the CcmA protein was isolated in a dish, it spontaneously formed sheets and helical bundles, confirming its role as a structural scaffold for the cell wall. When CcmA was absent from the cell of H. pylori, Taylor et al. observed that the pattern of cell growth changed substantially. This work identifies a key component directing the growth of the cell wall of H. pylori and therefore, a new target for antibiotics. Its helical shape is essential for H. pylori to infect the gut, so blocking the action of the CcmA protein may interrupt cell wall growth and prevent stomach infections.  more » « less
Award ID(s):
1734030
NSF-PAR ID:
10169858
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
9
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many bacterial species are helical in shape, including the widespread pathogen H. pylori . Motivated by recent experiments on H. pylori showing that cell wall synthesis is not uniform [J. A. Taylor, et al ., eLife , 2020, 9 , e52482], we investigate the possible formation of helical cell shape induced by elastic heterogeneity. We show, experimentally and theoretically, that helical morphogenesis can be produced by pressurizing an elastic cylindrical vessel with helical reinforced lines. The properties of the pressurized helix are highly dependent on the initial helical angle of the reinforced region. We find that steep angles result in crooked helices with, surprisingly, a reduced end-to-end distance upon pressurization. This work helps explain the possible mechanisms for the generation of helical cell morphologies and may inspire the design of novel pressure-controlled helical actuators. 
    more » « less
  2. Summary

    Chronic infection withHelicobacter pylorican lead to the development of gastric ulcers and stomach cancers. The helical cell shape ofH. pyloripromotes stomach colonization. Screens for loss of helical shape have identified several periplasmic peptidoglycan (PG) hydrolases and non‐enzymatic putative scaffolding proteins, including Csd5. Both over and under expression of the PG hydrolases perturb helical shape, but the mechanism used to coordinate and localize their enzymatic activities is not known. Using immunoprecipitation and mass spectrometry we identified Csd5 interactions with cytosolic proteins CcmA, a bactofilin required for helical shape, and MurF, a PG precursor synthase, as well as the inner membrane spanning ATP synthase. A combination of Csd5 domain deletions, point mutations, and transmembrane domain chimeras revealed that the N‐terminal transmembrane domain promotes MurF, CcmA, and ATP synthase interactions, while the C‐terminal SH3 domain mediates PG binding. We conclude that Csd5 promotes helical shape as part of a membrane associated, multi‐protein shape complex that includes interactions with the periplasmic cell wall, a PG precursor synthesis enzyme, the bacterial cytoskeleton, and ATP synthase.

     
    more » « less
  3. Mycobacteria, including the human pathogen Mycobacterium tuberculosis , grow by inserting new cell wall material at their poles. This process and that of division are asymmetric, producing a phenotypically heterogeneous population of cells that respond non-uniformly to stress (Aldridge et al., 2012; Rego et al., 2017). Surprisingly, deletion of a single gene – lamA – leads to more symmetry, and to a population of cells that is more uniformly killed by antibiotics (Rego et al., 2017). How does LamA create asymmetry? Here, using a combination of quantitative time-lapse imaging, bacterial genetics, and lipid profiling, we find that LamA recruits essential proteins involved in cell wall synthesis to one side of the cell – the old pole. One of these proteins, MSMEG_0317, here renamed PgfA, was of unknown function. We show that PgfA is a periplasmic protein that interacts with MmpL3, an essential transporter that flips mycolic acids in the form of trehalose monomycolate (TMM), across the plasma membrane. PgfA interacts with a TMM analog suggesting a direct role in TMM transport. Yet our data point to a broader function as well, as cells with altered PgfA levels have differences in the abundance of other lipids and are differentially reliant on those lipids for survival. Overexpression of PgfA, but not MmpL3, restores growth at the old poles in cells missing lamA . Together, our results suggest that PgfA is a key determinant of polar growth and cell envelope composition in mycobacteria, and that the LamA-mediated recruitment of this protein to one side of the cell is a required step in the establishment of cellular asymmetry. 
    more » « less
  4. Sloan Siegrist, M. (Ed.)
    ABSTRACT The Agrobacterium growth pole ring (GPR) protein forms a hexameric ring at the growth pole (GP) that is essential for polar growth. GPR is large (2,115 amino acids) and contains 1,700 amino acids of continuous α-helices. To dissect potential GPR functional domains, we created deletions of regions with similarity to human apolipoprotein A-IV (396 amino acids), itself composed of α-helical domains. We also tested deletions of the GPR C terminus. Deletions were inducibly expressed as green fluorescent protein (GFP) fusion proteins and tested for merodiploid interference with wild-type (WT) GPR function, for partial function in cells lacking GPR, and for formation of paired fluorescent foci (indicative of hexameric rings) at the GP. Deletion of domains similar to human apolipoprotein A-IV in GPR caused defects in cell morphology when expressed in trans to WT GPR and provided only partial complementation to cells lacking GPR. Agrobacterium -specific domains A-IV-1 and A-IV-4 contain predicted coiled coil (CC) regions of 21 amino acids; deletion of CC regions produced severe defects in cell morphology in the interference assay. Mutants that produced the most severe effects on cell shape also failed to form paired polar foci. Modeling of A-IV-1 and A-IV-4 reveals significant similarity to the solved structure of human apolipoprotein A-IV. GPR C-terminal deletions profoundly blocked complementation. Finally, peptidoglycan (PG) synthesis is abnormally localized circumferentially in cells lacking GPR. The results support the hypothesis that GPR plays essential roles as an organizing center for membrane and PG synthesis during polar growth. IMPORTANCE Bacterial growth and division are extensively studied in model systems ( Escherichia coli , Bacillus subtilis , and Caulobacter crescentus ) that grow by dispersed insertion of new cell wall material along the length of the cell. An alternative growth mode—polar growth—is used by some Actinomycetales and Proteobacteria species. The latter phylum includes the family Rhizobiaceae , in which many species, including Agrobacterium tumefaciens , exhibit polar growth. Current research aims to identify growth pole (GP) factors. The Agrobacterium growth pole ring (GPR) protein is essential for polar growth and forms a striking hexameric ring structure at the GP. GPR is long (2,115 amino acids), and little is known about regions essential for structure or function. Genetic analyses demonstrate that the C terminus of GPR, and two internal regions with homology to human apolipoproteins (that sequester lipids), are essential for GPR function and localization to the GP. We hypothesize that GPR is an organizing center for membrane and cell wall synthesis during polar growth. 
    more » « less
  5. Abstract Peptidoglycan—a mesh sac of glycans that are linked by peptides—is the main component of bacterial cell walls. Peptidoglycan provides structural strength, protects cells from osmotic pressure and contributes to shape. All bacterial glycans are repeating disaccharides of N- acetylglucosamine (Glc N Ac) β-(1–4)-linked to N -acetylmuramic acid (Mur N Ac). Borrelia burgdorferi , the tick-borne Lyme disease pathogen, produces glycan chains in which Mur N Ac is occasionally replaced with an unknown sugar. Nuclear magnetic resonance, liquid chromatography–mass spectroscopy and genetic analyses show that B. burgdorferi produces glycans that contain Glc N Ac–Glc N Ac. This unusual disaccharide is chitobiose, a component of its chitinous tick vector. Mutant bacteria that are auxotrophic for chitobiose have altered morphology, reduced motility and cell envelope defects that probably result from producing peptidoglycan that is stiffer than that in wild-type bacteria. We propose that the peptidoglycan of B. burgdorferi probably evolved by adaptation to obligate parasitization of a tick vector, resulting in a biophysical cell-wall alteration to withstand the atypical torque associated with twisting motility. 
    more » « less