skip to main content


Title: Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data
Microorganisms are ubiquitous in the biosphere, playing a crucial role in both biogeochemistry of the planet and human health. However, identifying these microorganisms and defining their function are challenging. Widely used approaches in comparative metagenomics, 16S amplicon sequencing and whole genome shotgun sequencing (WGS), have provided access to DNA sequencing analysis to identify microorganisms and evaluate diversity and abundance in various environments. However, advances in parallel high-throughput DNA sequencing in the past decade have introduced major hurdles, namely standardization of methods, data storage, reproducible interoperability of results, and data sharing. The National Ecological Observatory Network (NEON), established by the National Science Foundation, enables all researchers to address queries on a regional to continental scale around a variety of environmental challenges and provide high-quality, integrated, and standardized data from field sites across the U.S. As the amount of metagenomic data continues to grow, standardized procedures that allow results across projects to be assessed and compared is becoming increasingly important in the field of metagenomics. We demonstrate the feasibility of using publicly available NEON soil metagenomic sequencing datasets in combination with open access Metagenomics Rapid Annotation using the Subsystem Technology (MG-RAST) server to illustrate advantages of WGS compared to 16S amplicon sequencing. Four WGS and four 16S amplicon sequence datasets, from surface soil samples prepared by NEON investigators, were selected for comparison, using standardized protocols collected at the same locations in Colorado between April-July 2014. The dominant bacterial phyla detected across samples agreed between sequencing methodologies. However, WGS yielded greater microbial resolution, increased accuracy, and allowed identification of more genera of bacteria, archaea, viruses, and eukaryota, and putative functional genes that would have gone undetected using 16S amplicon sequencing. NEON open data will be useful for future studies characterizing and quantifying complex ecological processes associated with changing aquatic and terrestrial ecosystems.  more » « less
Award ID(s):
1839171
NSF-PAR ID:
10169909
Author(s) / Creator(s):
Date Published:
Journal Name:
PloS one
Volume:
15
Issue:
2
ISSN:
1932-6203
Page Range / eLocation ID:
e0228899
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gilbert, Jack A. (Ed.)
    ABSTRACT Small subunit rRNA (SSU rRNA) amplicon sequencing can quantitatively and comprehensively profile natural microbiomes, representing a critically important tool for studying diverse global ecosystems. However, results will only be accurate if PCR primers perfectly match the rRNA of all organisms present. To evaluate how well marine microorganisms across all 3 domains are detected by this method, we compared commonly used primers with >300 million rRNA gene sequences retrieved from globally distributed marine metagenomes. The best-performing primers compared to 16S rRNA of bacteria and archaea were 515Y/926R and 515Y/806RB, which perfectly matched over 96% of all sequences. Considering cyanobacterial and chloroplast 16S rRNA, 515Y/926R had the highest coverage (99%), making this set ideal for quantifying marine primary producers. For eukaryotic 18S rRNA sequences, 515Y/926R also performed best (88%), followed by V4R/V4RB (18S rRNA specific; 82%)—demonstrating that the 515Y/926R combination performs best overall for all 3 domains. Using Atlantic and Pacific Ocean samples, we demonstrate high correspondence between 515Y/926R amplicon abundances (generated for this study) and metagenomic 16S rRNA (median R 2 = 0.98, n  = 272), indicating amplicons can produce equally accurate community composition data compared with shotgun metagenomics. Our analysis also revealed that expected performance of all primer sets could be improved with minor modifications, pointing toward a nearly completely universal primer set that could accurately quantify biogeochemically important taxa in ecosystems ranging from the deep sea to the surface. In addition, our reproducible bioinformatic workflow can guide microbiome researchers studying different ecosystems or human health to similarly improve existing primers and generate more accurate quantitative amplicon data. IMPORTANCE PCR amplification and sequencing of marker genes is a low-cost technique for monitoring prokaryotic and eukaryotic microbial communities across space and time but will work optimally only if environmental organisms match PCR primer sequences exactly. In this study, we evaluated how well primers match globally distributed short-read oceanic metagenomes. Our results demonstrate that primer sets vary widely in performance, and that at least for marine systems, rRNA amplicon data from some primers lack significant biases compared to metagenomes. We also show that it is theoretically possible to create a nearly universal primer set for diverse saline environments by defining a specific mixture of a few dozen oligonucleotides, and present a software pipeline that can guide rational design of primers for any environment with available meta’omic data. 
    more » « less
  2. Abstract

    Soil microbial communities play critical roles in various ecosystem processes, but studies at a large spatial and temporal scale have been challenging due to the difficulty in finding the relevant samples in available data sets as well as the lack of standardization in sample collection and processing. The National Ecological Observatory Network (NEON) has been collecting soil microbial community data multiple times per year for 47 terrestrial sites in 20 eco‐climatic domains, producing one of the most extensive standardized sampling efforts for soil microbial biodiversity to date. Here, we introduce the neonMicrobe R package—a suite of downloading, preprocessing, data set assembly, and sensitivity analysis tools for NEON’s newly published 16S and ITS amplicon sequencing data products which characterize soil bacterial and fungal communities, respectively. neonMicrobe is designed to make these data more accessible to ecologists without assuming prior experience with bioinformatic pipelines. We describe quality control steps used to remove quality‐flagged samples, report on sensitivity analyses used to determine appropriate quality filtering parameters for the DADA2 workflow, and demonstrate the immediate usability of the output data by conducting standard analyses of soil microbial diversity. The sequence abundance tables produced byneonMicrobecan be linked to NEON’s other data products (e.g., soil physical and chemical properties, plant community composition) and soil subsamples archived in the NEON Biorepository. We provide recommendations for incorporatingneonMicrobeinto reproducible scientific workflows, discuss technical considerations for large‐scale amplicon sequence analysis, and outline future directions for NEON‐enabled microbial ecology. In particular, we believe that NEON marker gene sequence data will allow researchers to answer outstanding questions about the spatial and temporal dynamics of soil microbial communities while explicitly accounting for scale dependence. We expect that the data produced by NEON and theneonMicrobeR package will act as a valuable ecological baseline to inform and contextualize future experimental and modeling endeavors.

     
    more » « less
  3. David, Lawrence A. (Ed.)
    ABSTRACT Shotgun metagenomic sequencing has transformed our understanding of microbial community ecology. However, preparing metagenomic libraries for high-throughput DNA sequencing remains a costly, labor-intensive, and time-consuming procedure, which in turn limits the utility of metagenomes. Several library preparation procedures have recently been developed to offset these costs, but it is unclear how these newer procedures compare to current standards in the field. In particular, it is not clear if all such procedures perform equally well across different types of microbial communities or if features of the biological samples being processed (e.g., DNA amount) impact the accuracy of the approach. To address these questions, we assessed how five different shotgun DNA sequence library preparation methods, including the commonly used Nextera Flex kit, perform when applied to metagenomic DNA. We measured each method’s ability to produce metagenomic data that accurately represent the underlying taxonomic and genetic diversity of the community. We performed these analyses across a range of microbial community types (e.g., soil, coral associated, and mouse gut associated) and input DNA amounts. We find that the type of community and amount of input DNA influence each method’s performance, indicating that careful consideration may be needed when selecting between methods, especially for low-complexity communities. However, the cost-effective preparation methods that we assessed are generally comparable to the current gold-standard Nextera DNA Flex kit for high-complexity communities. Overall, the results from this analysis will help expand and even facilitate access to metagenomic approaches in future studies. IMPORTANCE Metagenomic library preparation methods and sequencing technologies continue to advance rapidly, allowing researchers to characterize microbial communities in previously underexplored environmental samples and systems. However, widely accepted standardized library preparation methods can be cost-prohibitive. Newly available approaches may be less expensive, but their efficacy in comparison to standardized methods remains unknown. In this study, we compared five different metagenomic library preparation methods. We evaluated each method across a range of microbial communities varying in complexity and quantity of input DNA. Our findings demonstrate the importance of considering sample properties, including community type, composition, and DNA amount, when choosing the most appropriate metagenomic library preparation method. 
    more » « less
  4. Jansson, Janet K. (Ed.)
    ABSTRACT Soil ecosystems harbor diverse microorganisms and yet remain only partially characterized as neither single-cell sequencing nor whole-community sequencing offers a complete picture of these complex communities. Thus, the genetic and metabolic potential of this “uncultivated majority” remains underexplored. To address these challenges, we applied a pooled-cell-sorting-based mini-metagenomics approach and compared the results to bulk metagenomics. Informatic binning of these data produced 200 mini-metagenome assembled genomes (sorted-MAGs) and 29 bulk metagenome assembled genomes (MAGs). The sorted and bulk MAGs increased the known phylogenetic diversity of soil taxa by 7.2% with respect to the Joint Genome Institute IMG/M database and showed clade-specific sequence recruitment patterns across diverse terrestrial soil metagenomes. Additionally, sorted-MAGs expanded the rare biosphere not captured through MAGs from bulk sequences, exemplified through phylogenetic and functional analyses of members of the phylum Bacteroidetes . Analysis of 67 Bacteroidetes sorted-MAGs showed conserved patterns of carbon metabolism across four clades. These results indicate that mini-metagenomics enables genome-resolved investigation of predicted metabolism and demonstrates the utility of combining metagenomics methods to tap into the diversity of heterogeneous microbial assemblages. IMPORTANCE Microbial ecologists have historically used cultivation-based approaches as well as amplicon sequencing and shotgun metagenomics to characterize microbial diversity in soil. However, challenges persist in the study of microbial diversity, including the recalcitrance of the majority of microorganisms to laboratory cultivation and limited sequence assembly from highly complex samples. The uncultivated majority thus remains a reservoir of untapped genetic diversity. To address some of the challenges associated with bulk metagenomics as well as low throughput of single-cell genomics, we applied flow cytometry-enabled mini-metagenomics to capture expanded microbial diversity from forest soil and compare it to soil bulk metagenomics. Our resulting data from this pooled-cell sorting approach combined with bulk metagenomics revealed increased phylogenetic diversity through novel soil taxa and rare biosphere members. In-depth analysis of genomes within the highly represented Bacteroidetes phylum provided insights into conserved and clade-specific patterns of carbon metabolism. 
    more » « less
  5. We introduce Operational Genomic Unit (OGU), a metagenome analysis strategy that directly exploits sequence alignment hits to individual reference genomes as the minimum unit for assessing the diversity of microbial communities and their relevance to environmental factors. This approach is independent from taxonomic classification, granting the possibility of maximal resolution of community composition, and organizes features into an accurate hierarchy using a phylogenomic tree. The outputs are suitable for contemporary analytical protocols for community ecology, differential abundance and supervised learning while supporting phylogenetic methods, such as UniFrac and phylofactorization, that are seldomly applied to shotgun metagenomics despite being prevalent in 16S rRNA gene amplicon studies. As demonstrated in one synthetic and two real-world case studies, the OGU method produces biologically meaningful patterns from microbiome datasets. Such patterns further remain detectable at very low metagenomic sequencing depths. Compared with taxonomic unit-based analyses implemented in currently adopted metagenomics tools, and the analysis of 16S rRNA gene amplicon sequence variants, this method shows superiority in informing biologically relevant insights, including stronger correlation with body environment and host sex on the Human Microbiome Project dataset, and more accurate prediction of human age by the gut microbiomes in the Finnish population. We provide Woltka, a bioinformatics tool to implement this method, with full integration with the QIIME 2 package and the Qiita web platform, to facilitate OGU adoption in future metagenomics studies. Importance Shotgun metagenomics is a powerful, yet computationally challenging, technique compared to 16S rRNA gene amplicon sequencing for decoding the composition and structure of microbial communities. However, current analyses of metagenomic data are primarily based on taxonomic classification, which is limited in feature resolution compared to 16S rRNA amplicon sequence variant analysis. To solve these challenges, we introduce Operational Genomic Units (OGUs), which are the individual reference genomes derived from sequence alignment results, without further assigning them taxonomy. The OGU method advances current read-based metagenomics in two dimensions: (i) providing maximal resolution of community composition while (ii) permitting use of phylogeny-aware tools. Our analysis of real-world datasets shows several advantages over currently adopted metagenomic analysis methods and the finest-grained 16S rRNA analysis methods in predicting biological traits. We thus propose the adoption of OGU as standard practice in metagenomic studies. 
    more » « less