Sampling reservoir hosts over time and space is critical to detect epizootics, predict spillover and design interventions. However, because sampling is logistically difficult and expensive, researchers rarely perform spatio-temporal sampling of many reservoir hosts. Bats are reservoirs of many virulent zoonotic pathogens such as filoviruses and henipaviruses, yet the highly mobile nature of these animals has limited optimal sampling of bat populations. To quantify the frequency of temporal sampling and to characterize the geographical scope of bat virus research, we here collated data on filovirus and henipavirus prevalence and seroprevalence in wild bats. We used a phylogenetically controlled meta-analysis to next assess temporal and spatial variation in bat virus detection estimates. Our analysis shows that only one in four bat virus studies report data longitudinally, that sampling efforts cluster geographically (e.g. filovirus data are available across much of Africa and Asia but are absent from Latin America and Oceania), and that sampling designs and reporting practices may affect some viral detection estimates (e.g. filovirus seroprevalence). Within the limited number of longitudinal bat virus studies, we observed high heterogeneity in viral detection estimates that in turn reflected both spatial and temporal variation. This suggests that spatio-temporal sampling designs are important to understand how zoonotic viruses are maintained and spread within and across wild bat populations, which in turn could help predict and preempt risks of zoonotic viral spillover.
more »
« less
Identifying Suspect Bat Reservoirs of Emerging Infections
Bats host a number of pathogens that cause severe disease and onward transmission in humans and domestic animals. Some of these pathogens, including henipaviruses and filoviruses, are considered a concern for future pandemics. There has been substantial effort to identify these viruses in bats. However, the reservoir hosts for Ebola virus are still unknown and henipaviruses are largely uncharacterized across their distribution. Identifying reservoir species is critical in understanding the viral ecology within these hosts and the conditions that lead to spillover. We collated surveillance data to identify taxonomic patterns in prevalence and seroprevalence and to assess sampling efforts across species. We systematically collected data on filovirus and henipavirus detections and used a machine-learning algorithm, phylofactorization, in order to search the bat phylogeny for cladistic patterns in filovirus and henipavirus infection, accounting for sampling efforts. Across sampled bat species, evidence for filovirus infection was widely dispersed across the sampled phylogeny. We found major gaps in filovirus sampling in bats, especially in Western Hemisphere species. Evidence for henipavirus infection was clustered within the Pteropodidae; however, no other clades have been as intensely sampled. The major predictor of filovirus and henipavirus exposure or infection was sampling effort. Based on these results, we recommend expanding surveillance for these pathogens across the bat phylogenetic tree.
more »
« less
- Award ID(s):
- 1716698
- PAR ID:
- 10169933
- Date Published:
- Journal Name:
- Vaccines
- Volume:
- 8
- Issue:
- 2
- ISSN:
- 2076-393X
- Page Range / eLocation ID:
- 228
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spiropoulou, Christina F (Ed.)ABSTRACT Bacterial pathogens remain poorly characterized in bats, especially in North America. We describe novel (and in some cases panmictic) hemoplasmas (10.1% positivity) and bartonellae (25.6% positivity) across three colonies of Mexican free-tailed bats (Tadarida brasiliensis), a partially migratory species that can seasonally travel hundreds of kilometers. Molecular analyses identified three novelCandidatushemoplasma species most similar to another novelCandidatusspecies in Neotropical molossid bats. We also detected novel hemoplasmas in sympatric cave myotis (Myotis velifer) and pallid bats (Antrozous pallidus), with sequences in the latter 96.5% related toCandidatusMycoplasma haematohominis. We identified nineBartonellagenogroups, including those in cave myotis with 96.1% similarity toCandidatusBartonella mayotimonensis. We also detectedBartonella rochalimaein migratory Mexican free-tailed bats, representing the first report of this human pathogen in the Chiroptera. Monthly sampling of migratory Mexican free-tailed bats during their North American occupancy period also revealed significant seasonality in infection for both bacterial pathogens, with prevalence increasing following spring migration, peaking in the maternity season, and declining into fall migration. The substantial diversity and seasonality of hemoplasmas and bartonellae observed here suggest that additional longitudinal, genomic, and immunological studies in bats are warranted to inform One Health approaches. IMPORTANCEBats have been intensively sampled for viruses but remain mostly understudied for bacterial pathogens. However, bacterial pathogens can have significant impacts on both human health and bat morbidity and even mortality. Hemoplasmas and bartonellae are facultative intracellular bacteria of special interest in bats, given their high prevalence and substantial genetic diversity. Surveys have also supported plausible zoonotic transmission of these bacteria from bats to humans, includingCandidatusMycoplasma haematohominis andCandidatusBartonella mayotimonensis. Greater characterization of these bacteria across global bat diversity (over 1,480 species) is therefore warranted to inform infection risks for both bats and humans, although little surveillance has thus far been conducted in North American bats. We here describe novel (and in some cases panmictic) hemoplasmas and bartonellae across three colonies of Mexican free-tailed bats and sympatric bat species. We find high genetic diversity and seasonality of these pathogens, including lineages closely related to human pathogens, such asBartonella rochalimae.more » « less
-
Abstract Most emerging pathogens can infect multiple species, underlining the importance of understanding the ecological and evolutionary factors that allow some hosts to harbour greater infection prevalence and share pathogens with other species. However, our understanding of pathogen jumps is based primarily around viruses, despite bacteria accounting for the greatest proportion of zoonoses. Because bacterial pathogens in bats (order Chiroptera) can have conservation and human health consequences, studies that examine the ecological and evolutionary drivers of bacterial prevalence and barriers to pathogen sharing are crucially needed. Here were studied haemotropicMycoplasmaspp. (i.e., haemoplasmas) across a species‐rich bat community in Belize over two years. Across 469 bats spanning 33 species, half of individuals and two‐thirds of species were haemoplasma positive. Infection prevalence was higher for males and for species with larger body mass and colony sizes. Haemoplasmas displayed high genetic diversity (21 novel genotypes) and strong host specificity. Evolutionary patterns supported codivergence of bats and bacterial genotypes alongside phylogenetically constrained host shifts. Bat species centrality to the network of shared haemoplasma genotypes was phylogenetically clustered and unrelated to prevalence, further suggesting rare—but detectable—bacterial sharing between species. Our study highlights the importance of using fine phylogenetic scales when assessing host specificity and suggests phylogenetic similarity may play a key role in host shifts not only for viruses but also for bacteria. Such work more broadly contributes to increasing efforts to understand cross‐species transmission and the epidemiological consequences of bacterial pathogens.more » « less
-
Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus–bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology. We propose a scheme for evaluating presumed virus–host relationships by evidence type and quality, using the contrasting available evidence for Orthoebolavirus versus Orthomarburgvirus as an example. We review the wording in abstracts and discussions of all 162 papers, identifying key framing terms, how these refer to findings, and how they might contribute to people's beliefs about bats. We discuss the impact of scientific research communication on public perception and emphasize the need for strategies that minimize human–bat conflict and support bat conservation. Finally, we make recommendations for best practices that will improve virological study metadata.more » « less
-
Abstract Contaminants such as mercury are pervasive and can have immunosuppressive effects on wildlife. Impaired immunity could be important for forecasting pathogen spillover, as many land‐use changes that generate mercury contamination also bring wildlife into close contact with humans and domestic animals. However, the interactions among contaminants, immunity and infection are difficult to study in natural systems, and empirical tests of possible directional relationships remain rare.We capitalized on extreme mercury variation in a diverse bat community in Belize to test association among contaminants, immunity and infection. By comparing a previous dataset of bats sampled in 2014 with new data from 2017, representing a period of rapid agricultural land conversion, we first confirmed bat species more reliant on aquatic prey had higher fur mercury. Bats in the agricultural habitat also had higher mercury in recent years. We then tested covariation between mercury and cellular immunity and determined if such relationships mediated associations between mercury and bacterial pathogens. As bat ecology can dictate exposure to mercury and pathogens, we also assessed species‐specific patterns in mercury–infection relationships.Across the bat community, individuals with higher mercury had fewer neutrophils but not lymphocytes, suggesting stronger associations with innate immunity. However, the odds of infection for haemoplasmas andBartonellaspp. were generally lowest in bats with high mercury, and relationships between mercury and immunity did not mediate infection patterns. Mercury also showed species‐ and clade‐specific relationships with infection, being associated with especially low odds for haemoplasmas inPteronotus mesoamericanusandDermanura phaeotis. ForBartonellaspp., mercury was associated with particularly low odds of infection in the genusPteronotusbut high odds in the subfamily Stenodermatinae.Synthesis and application. Lower general infection risk in bats with high mercury despite weaker innate defense suggests contaminant‐driven loss of pathogen habitat (i.e. anemia) or vector mortality as possible causes. Greater attention to these potential pathways could help disentangle relationships among contaminants, immunity and infection in anthropogenic habitats and help forecast disease risks. Our results also suggest that contaminants may increase infection risk in some taxa but not others, emphasizing the importance of considering surveillance and management at different phylogenetic scales.more » « less
An official website of the United States government

