skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rethinking Query Expansion for BERT Reranking
Recent studies have shown promising results of using BERT for Information Retrieval with its advantages in understanding the text content of documents and queries. Compared to short, keywords queries, higher accuracy of BERT were observed on long, natural language queries, demonstrating BERT’s ability in extracting rich information from complex queries. These results show the potential of using query expansion to generate better queries for BERT-based rankers. In this work, we explore BERT’s sensitivity to the addition of structure and concepts. We find that traditional word-based query expansion is not entirely applicable, and provide insight into methods that produce better experimental results.  more » « less
Award ID(s):
1815528
PAR ID:
10170075
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020
Page Range / eLocation ID:
297-304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dense retrieval systems conduct first-stage retrieval using embedded representations and simple similarity metrics to match a query to documents. Its effectiveness depends on encoded embeddings to capture the semantics of queries and documents, a challenging task due to the shortness and ambiguity of search queries. This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval. ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels. It also keeps the document index unchanged to reduce overhead. ANCE-PRF significantly outperforms ANCE and other recent dense retrieval systems on several datasets. Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism. 
    more » « less
  2. Ganguly, Debasis; Gangopadhyay, Surupendu; Mitra, Mandar; Majumder, Prasenjit (Ed.)
    For most queries, the set of relevant documents spans multiple subtopics. Inspired by the neural ranking models and query-specific neural clustering models, we develop Topic-Mono-BERT which performs both tasks jointly. Based on text embeddings of BERT, our model learns a shared embedding that is optimized for both tasks. The clustering hypothesis would suggest that embeddings which place topically similar text in close proximity will also perform better on ranking tasks. Our model is trained with the Wikimarks approach to obtain training signals for relevance and subtopics on the same queries. Our task is to identify overview passages that can be used to construct a succinct answer to the query. Our empirical evaluation on two publicly available passage retrieval datasets suggests that including the clustering supervision in the ranking model leads to about 16% improvement in identifying text passages that summarize different subtopics within a query. 
    more » « less
  3. Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR.Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embed-dings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited. 
    more » « less
  4. Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR.Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embeddings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited. 
    more » « less
  5. Query understanding plays a key role in exploring users’ search intents. However, it is inherently challenging since it needs to capture semantic information from short and ambiguous queries and often requires massive task-specific labeled data. In recent years, pre-trained language models (PLMs) have advanced various natural language processing tasks because they can extract general semantic information from large-scale corpora. However, directly applying them to query understanding is sub-optimal because existing strategies rarely consider to boost the search performance. On the other hand, search logs contain user clicks between queries and urls that provide rich users’ search behavioral information on queries beyond their content. Therefore, in this paper, we aim to fill this gap by exploring search logs. In particular, we propose a novel graph-enhanced pre-training framework, GE-BERT, which leverages both query content and the query graph to capture both semantic information and users’ search behavioral information of queries. Extensive experiments on offline and online tasks have demonstrated the effectiveness of the proposed framework. 
    more » « less