Semiconducting mesocrystalline bulk polymer specimens that exhibit near‐intrinsic properties using channel‐die pressing are demonstrated. A predominant edge‐on orientation is obtained for poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) throughout 2 mm‐thick/wide samples. This persistent mesocrystalline arrangement at macroscopic scales allows reliable evaluation of the electronic charge‐transport anisotropy along all three crystallographic axes, with high mobilities found along the π‐stacking. Indeed, charge‐carrier mobilities of up to 2.3 cm2V−1s−1are measured along the π‐stack, which are some of the highest mobilities reported for polymers at low charge‐carrier densities (drop‐cast films display mobilities of maximum ≈10−3cm2V−1s−1). The structural coherence also leads to an unusually well‐defined photoluminescence line‐shape characteristic of an H‐aggregate (measured from the surface perpendicular to the materials flow), rather than the typical HJ‐aggregate feature usually found for P3HT. The approach is widely applicable: to electrical conductors and materials used in n‐type devices, such as poly{[
The rational creation of two-component conjugated polymer systems with high levels of phase purity in each component is challenging but crucial for realizing printed soft-matter electronics. Here, we report a mixed-flow microfluidic printing (MFMP) approach for two-component
- PAR ID:
- 10170121
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 30
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 17551-17557
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract N ,N ′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt ‐5,5′‐(2,2′‐bithiophene)} (N2200) where the mesocrystalline structure leads to high electron transport along the polymer backbones (≈1.3 cm2V−1s−1). This versatility and the broad applicability of channel‐die pressing signifies its promise as a straightforward, readily scalable method to fabricate bulk semiconducting polymer structures at macroscopic scales with properties typically accessible only by the tedious growth of single crystals. -
Abstract The synthesis and characterization of new semiconducting materials is essential for developing high‐efficiency organic solar cells. Here, the synthesis, physiochemical properties, thin film morphology, and photovoltaic response of ITN‐F4 and ITzN‐F4, the first indacenodithienothiophene nonfullerene acceptors that combine π‐extension and fluorination, are reported. The neat acceptors and bulk‐heterojunction blend films with fluorinated donor polymer poly{[4,8‐bis[5‐(2‐ethylhexyl)‐4‐fluoro‐2‐thienyl]benzo[1,2‐b:4,5‐
b ′]‐dithiophene‐2,6‐diyl]‐alt ‐[2,5‐thiophenediyl[5,7‐bis(2‐ethylhexyl)‐4,8‐dioxo‐4H ,8H ‐benzo[1,2‐c :4,5‐c ′]dithiophene‐1,3‐diyl]]} (PBDB‐TF, also known as PM6) are investigated using a battery of techniques, including single crystal X‐ray diffraction, fs transient absorption spectroscopy (fsTA), photovoltaic response, space‐charge‐limited current transport, impedance spectroscopy, grazing incidence wide angle X‐ray scattering, and density functional theory level computation. ITN‐F4 and ITzN‐F4 are found to provide power conversion efficiencies greater and internal reorganization energies less than their non‐π‐extended and nonfluorinated counterparts when paired with PBDB‐TF. Additionally, ITN‐F4 and ITzN‐F4 exhibit favorable bulk‐heterojunction relevant single crystal packing architectures. fsTA reveals that both ITN‐F4 and ITzN‐F4 undergo ultrafast hole transfer (<300 fs) in films with PBDB‐TF, despite excimer state formation in both the neat and blend films. Taken together and in comparison to related structures, these results demonstrate that combined fluorination and π‐extension synergistically promote crystallographic π‐face‐to‐face packing, increase crystallinity, reduce internal reorganization energies, increase interplanar π–π electronic coupling, and increase power conversion efficiency. -
null (Ed.)The effects of sequential n-doping on a high-electron-mobility naphthalene-diimide-based copolymer poly[( N , N ′-bis(2-decyltetradecyl)-naphthalene-1,8:4,5-bis(dicarboximide)-2,6-diyl)-(selenophene-2,5-diyl)-(benzo[ c ][1,2,5]thiadiazole-4,7-diyl)-(selenophene-2,5-diyl)], PNBS, are reported. Grazing-incidence XRD measurements show that PNBS doped with 2,2′-bis(4-(dimethylamino)phenyl)-1,1′,3,3′-tetramethyl-2,2′,3,3′-tetrahydro-1 H ,1′ H -2,2′-bibenzo[ d ]imidazole, (N-DMBI) 2 , has increased order relative to both the pristine polymer and a film doped with ruthenium pentamethylcyclopentadienyl mesitylene dimer. Films of PNBS optimally doped with (N-DMBI) 2 show electrical conductivities approaching 2 mS cm −1 in air. Temperature-dependent electrical measurements suggest that the polaronic charge carriers are highly localized, which is consistent with the moderate conductivity values obtained.more » « less
-
Abstract The nanoscale interpenetrating electron donor–acceptor network in organic bulk heterojunction (BHJ) solar cells results in efficient charge photogeneration but creates complex 3D pathways for charge transport. At present, little is known about the extent to which out‐of‐plane charge flow relies on lateral electrical connectivity. In this work, a procedure, based on conductive atomic force microscopy, is introduced to quantify lateral current spreading during out‐of‐plane charge transport. Using the developed approach, the dependence of lateral spreading on BHJ phase separation, composition, and molecule type (small molecule vs polymer) is studied. In the small‐molecule BHJ, 7,7′‐(4,4‐bis(2‐ethylhexyl)‐4
H ‐silolo[3,2‐b :4,5‐b ′]dithiophene‐2,6‐diyl)bis(6‐fluoro‐4‐(5′‐hexyl‐[2,2′‐bithiophen]‐5‐yl)benzo[c ]‐[1,2,5]thiadiazole):(6,6)‐Phenyl‐C71‐butyric acid methyl ester (p ‐DTS(FBTTh2)2:PC71BM), an increase is observed in lateral hole current spreading as the population of donor crystallites, bearing an edge‐on molecular orientation, is increased. When integrated into BHJs, the polymer donor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) leads to greater lateral hole current spreading and more spatially uniform charge transport than the small‐molecule donor, owing to in‐plane charge transport along the polymer backbone. Through the newly introduced electrical characterization scheme, these experiments bring to light the role of lateral electrical connectivity in assisting charge navigation across BHJs. -
Abstract The demand of cost‐effective fabrication of printed flexible transistors has dramatically increased in recent years due to the need for flexible interface devices for various application including e‐skins, wearables, and medical patches. In this study, electrohydrodynamic (EHD) printing processes are developed to fabricate all the components of polymer‐based organic thin film transistors (OTFTs), including source/drain and gate electrodes, semiconductor channel, and gate dielectrics, which streamline the fabrication procedure for flexible OTFTs. The flexible transistors with top‐gate‐bottom‐contact configuration are fabricated by integrating organic semiconductor (i.e., poly(3‐hexylthiophene‐2,5‐diyl) blended with small molecule 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene), conductive polymer (i.e., poly (3,4‐ethylenedioxythiophene) polystyrene sulfonate), and ion‐gel dielectric. These functional inks are carefully designed with orthogonal solvents to enable their compatible printing into multilayered flexible OTFTs. The EHD printing process of each functional component is experimentally characterized and optimized. The fully EHD‐printed OTFTs show good electrical performance with mobility of 2.86 × 10−1cm2V−1s−1and on/off ratio of 104, and great mechanical flexibility with small mobility change at bending radius of 6 mm and stable transistor response under hundreds of bending cycles. The demonstrated all printing‐based fabrication process provides a cost‐effective route toward flexible electronics with OTFTs.