skip to main content

Title: Summarizing the solution space in tumor phylogeny inference by multiple consensus trees
Abstract Motivation Cancer phylogenies are key to studying tumorigenesis and have clinical implications. Due to the heterogeneous nature of cancer and limitations in current sequencing technology, current cancer phylogeny inference methods identify a large solution space of plausible phylogenies. To facilitate further downstream analyses, methods that accurately summarize such a set T of cancer phylogenies are imperative. However, current summary methods are limited to a single consensus tree or graph and may miss important topological features that are present in different subsets of candidate trees. Results We introduce the Multiple Consensus Tree (MCT) problem to simultaneously cluster T and infer a consensus tree for each cluster. We show that MCT is NP-hard, and present an exact algorithm based on mixed integer linear programming (MILP). In addition, we introduce a heuristic algorithm that efficiently identifies high-quality consensus trees, recovering all optimal solutions identified by the MILP in simulated data at a fraction of the time. We demonstrate the applicability of our methods on both simulated and real data, showing that our approach selects the number of clusters depending on the complexity of the solution space T. Availability and implementation Supplementary information Supplementary data are available at Bioinformatics online.
; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
i408 to i416
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation While each cancer is the result of an isolated evolutionary process, there are repeated patterns in tumorigenesis defined by recurrent driver mutations and their temporal ordering. Such repeated evolutionary trajectories hold the potential to improve stratification of cancer patients into subtypes with distinct survival and therapy response profiles. However, current cancer phylogeny methods infer large solution spaces of plausible evolutionary histories from the same sequencing data, obfuscating repeated evolutionary patterns. Results To simultaneously resolve ambiguities in sequencing data and identify cancer subtypes, we propose to leverage common patterns of evolution found in patient cohorts. We first formulate themore »Multiple Choice Consensus Tree problem, which seeks to select a tumor tree for each patient and assign patients into clusters in such a way that maximizes consistency within each cluster of patient trees. We prove that this problem is NP-hard and develop a heuristic algorithm, Revealing Evolutionary Consensus Across Patients (RECAP), to solve this problem in practice. Finally, on simulated data, we show RECAP outperforms existing methods that do not account for patient subtypes. We then use RECAP to resolve ambiguities in patient trees and find repeated evolutionary trajectories in lung and breast cancer cohorts. Availability and implementation Supplementary information Supplementary data are available at Bioinformatics online.« less
  2. Abstract Motivation The combination of genomic and epidemiological data holds the potential to enable accurate pathogen transmission history inference. However, the inference of outbreak transmission histories remains challenging due to various factors such as within-host pathogen diversity and multi-strain infections. Current computational methods ignore within-host diversity and/or multi-strain infections, often failing to accurately infer the transmission history. Thus, there is a need for efficient computational methods for transmission tree inference that accommodate the complexities of real data. Results We formulate the direct transmission inference (DTI) problem for inferring transmission trees that support multi-strain infections given a timed phylogeny and additionalmore »epidemiological data. We establish hardness for the decision and counting version of the DTI problem. We introduce Transmission Tree Uniform Sampler (TiTUS), a method that uses SATISFIABILITY to almost uniformly sample from the space of transmission trees. We introduce criteria that prioritize parsimonious transmission trees that we subsequently summarize using a novel consensus tree approach. We demonstrate TiTUS’s ability to accurately reconstruct transmission trees on simulated data as well as a documented HIV transmission chain. Availability and implementation Supplementary information Supplementary data are available at Bioinformatics online.« less
  3. Inspired by recent efforts to model cancer evolution with phylogenetic trees, we consider the problem of finding a consensus tumor evolution tree from a set of conflicting input trees. In contrast to traditional phylogenetic trees, the tumor trees we consider contain features such as mutation labels on internal vertices (in addition to the leaves) and allow multiple mutations to label a single vertex. We describe several distance measures between these tumor trees and present an algorithm to solve the consensus problem called GraPhyC. Our approach uses a weighted directed graph where vertices are sets of mutations and edges are weightedmore »using a function that depends on the number of times a parental relationship is observed between their constituent mutations in the set of input trees. We find a minimum weight spanning arborescence in this graph and prove that the resulting tree minimizes the total distance to all input trees for one of our presented distance measures. We evaluate our GraPhyC method using both simulated and real data. On simulated data we show that our method outperforms a baseline method at finding an appropriate representative tree. Using a set of tumor trees derived from both whole-genome and deep sequencing data from a Chronic Lymphocytic Leukemia patient we find that our approach identifies a tree not included in the set of input trees, but that contains characteristics supported by other reported evolutionary reconstructions of this tumor.« less
  4. Abstract Motivation In recent years, the well-known Infinite Sites Assumption (ISA) has been a fundamental feature of computational methods devised for reconstructing tumor phylogenies and inferring cancer progressions. However, recent studies leveraging Single-Cell Sequencing (SCS) techniques have shown evidence of the widespread recurrence and, especially, loss of mutations in several tumor samples. While there exist established computational methods that infer phylogenies with mutation losses, there remain some advancements to be made. Results We present SASC (Simulated Annealing Single-Cell inference): a new and robust approach based on simulated annealing for the inference of cancer progression from SCS data sets. In particular,more »we introduce an extension of the model of evolution where mutations are only accumulated, by allowing also a limited amount of mutation loss in the evolutionary history of the tumor: the Dollo-k model. We demonstrate that SASC achieves high levels of accuracy when tested on both simulated and real data sets and in comparison with some other available methods. Availability The Simulated Annealing Single-Cell inference (SASC) tool is open source and available at Supplementary information Supplementary data are available at Bioinformatics online.« less
  5. Abstract Motivation There has been recent increased interest in using algorithmic methods to infer the evolutionary tree underlying the developmental history of a tumor. Quantitative measures that compare such trees are vital to a number of different applications including benchmarking tree inference methods and evaluating common inheritance patterns across patients. However, few appropriate distance measures exist, and those that do have low resolution for differentiating trees or do not fully account for the complex relationship between tree topology and the inheritance of the mutations labeling that topology. Results Here we present two novel distance measures, Common Ancestor Set distance (CASet)more »and Distinctly Inherited Set Comparison distance (DISC), that are specifically designed to account for the subclonal mutation inheritance patterns characteristic of tumor evolutionary trees. We apply CASet and DISC to multiple simulated datasets and two breast cancer datasets and show that our distance measures allow for more nuanced and accurate delineation between tumor evolutionary trees than existing distance measures. Availability and implementation Implementations of CASet and DISC are freely available at: Supplementary information Supplementary data are available at Bioinformatics online.« less