skip to main content


Title: Summarizing the solution space in tumor phylogeny inference by multiple consensus trees
Abstract Motivation

Cancer phylogenies are key to studying tumorigenesis and have clinical implications. Due to the heterogeneous nature of cancer and limitations in current sequencing technology, current cancer phylogeny inference methods identify a large solution space of plausible phylogenies. To facilitate further downstream analyses, methods that accurately summarize such a set T of cancer phylogenies are imperative. However, current summary methods are limited to a single consensus tree or graph and may miss important topological features that are present in different subsets of candidate trees.

Results

We introduce the Multiple Consensus Tree (MCT) problem to simultaneously cluster T and infer a consensus tree for each cluster. We show that MCT is NP-hard, and present an exact algorithm based on mixed integer linear programming (MILP). In addition, we introduce a heuristic algorithm that efficiently identifies high-quality consensus trees, recovering all optimal solutions identified by the MILP in simulated data at a fraction of the time. We demonstrate the applicability of our methods on both simulated and real data, showing that our approach selects the number of clusters depending on the complexity of the solution space T.

Availability and implementation

https://github.com/elkebir-group/MCT.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
Award ID(s):
1850502
NSF-PAR ID:
10425973
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
35
Issue:
14
ISSN:
1367-4803
Page Range / eLocation ID:
p. i408-i416
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Motivation While each cancer is the result of an isolated evolutionary process, there are repeated patterns in tumorigenesis defined by recurrent driver mutations and their temporal ordering. Such repeated evolutionary trajectories hold the potential to improve stratification of cancer patients into subtypes with distinct survival and therapy response profiles. However, current cancer phylogeny methods infer large solution spaces of plausible evolutionary histories from the same sequencing data, obfuscating repeated evolutionary patterns. Results To simultaneously resolve ambiguities in sequencing data and identify cancer subtypes, we propose to leverage common patterns of evolution found in patient cohorts. We first formulate the Multiple Choice Consensus Tree problem, which seeks to select a tumor tree for each patient and assign patients into clusters in such a way that maximizes consistency within each cluster of patient trees. We prove that this problem is NP-hard and develop a heuristic algorithm, Revealing Evolutionary Consensus Across Patients (RECAP), to solve this problem in practice. Finally, on simulated data, we show RECAP outperforms existing methods that do not account for patient subtypes. We then use RECAP to resolve ambiguities in patient trees and find repeated evolutionary trajectories in lung and breast cancer cohorts. Availability and implementation https://github.com/elkebir-group/RECAP. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract Motivation

    The acquisition of somatic mutations by a tumor can be modeled by a type of evolutionary tree. However, it is impossible to observe this tree directly. Instead, numerous algorithms have been developed to infer such a tree from different types of sequencing data. But such methods can produce conflicting trees for the same patient, making it desirable to have approaches that can combine several such tumor trees into a consensus or summary tree. We introduce The Weighted m-Tumor Tree Consensus Problem (W-m-TTCP) to find a consensus tree among multiple plausible tumor evolutionary histories, each assigned a confidence weight, given a specific distance measure between tumor trees. We present an algorithm called TuELiP that is based on integer linear programming which solves the W-m-TTCP, and unlike other existing consensus methods, allows the input trees to be weighted differently.

    Results

    On simulated data we show that TuELiP outperforms two existing methods at correctly identifying the true underlying tree used to create the simulations. We also show that the incorporation of weights can lead to more accurate tree inference. On a Triple-Negative Breast Cancer dataset, we show that including confidence weights can have important impacts on the consensus tree identified.

    Availability

    An implementation of TuELiP and simulated datasets are available at https://bitbucket.org/oesperlab/consensus-ilp/src/main/.

     
    more » « less
  3. Abstract Motivation

    The estimation of phylogenetic trees is a major part of many biological dataset analyses, but maximum likelihood approaches are NP-hard and Bayesian MCMC methods do not scale well to even moderate-sized datasets. Supertree methods, which are used to construct trees from trees computed on subsets, are critically important tools for enabling the statistical estimation of phylogenies for large and potentially heterogeneous datasets. Supertree estimation is itself NP-hard, and no current supertree method has sufficient accuracy and scalability to provide good accuracy on the large datasets that supertree methods were designed for, containing thousands of species and many subset trees.

    Results

    We present FastRFS, a new method based on a dynamic programming method we have developed to find an exact solution to the Robinson-Foulds Supertree problem within a constrained search space. FastRFS has excellent accuracy in terms of criterion scores and topological accuracy of the resultant trees, substantially improving on competing methods on a large collection of biological and simulated data. In addition, FastRFS is extremely fast, finishing in minutes on even very large datasets, and in under an hour on a biological dataset with 2228 species.

    Availability and Implementation

    FastRFS is available on github at https://github.com/pranjalv123/FastRFS

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. null (Ed.)
    Abstract Motivation The combination of genomic and epidemiological data holds the potential to enable accurate pathogen transmission history inference. However, the inference of outbreak transmission histories remains challenging due to various factors such as within-host pathogen diversity and multi-strain infections. Current computational methods ignore within-host diversity and/or multi-strain infections, often failing to accurately infer the transmission history. Thus, there is a need for efficient computational methods for transmission tree inference that accommodate the complexities of real data. Results We formulate the direct transmission inference (DTI) problem for inferring transmission trees that support multi-strain infections given a timed phylogeny and additional epidemiological data. We establish hardness for the decision and counting version of the DTI problem. We introduce Transmission Tree Uniform Sampler (TiTUS), a method that uses SATISFIABILITY to almost uniformly sample from the space of transmission trees. We introduce criteria that prioritize parsimonious transmission trees that we subsequently summarize using a novel consensus tree approach. We demonstrate TiTUS’s ability to accurately reconstruct transmission trees on simulated data as well as a documented HIV transmission chain. Availability and implementation https://github.com/elkebir-group/TiTUS. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract Motivation

    The phylogenetic signal of structural variation informs a more comprehensive understanding of evolution. As (near-)complete genome assembly becomes more commonplace, the next methodological challenge for inferring genome rearrangement trees is the identification of syntenic blocks of orthologous sequences. In this article, we studied 94 reference quality genomes of primarily Mycobacterium tuberculosis (Mtb) isolates as a benchmark to evaluate these methods. The clonal nature of Mtb evolution, the manageable genome sizes, along with substantial levels of structural variation make this an ideal benchmarking dataset.

    Results

    We tested several methods for detecting homology and obtaining syntenic blocks and two methods for inferring phylogenies from them, then compared the resulting trees to the standard method’s tree, inferred from nucleotide substitutions. We found that, not only the choice of methods, but also their parameters can impact results, and that the tree inference method had less impact than the block determination method. Interestingly, a rearrangement tree based on blocks from the Cactus whole-genome aligner was fully compatible with the highly supported branches of the substitution-based tree, enabling the combination of the two into a high-resolution supertree. Overall, our results indicate that accurate trees can be inferred using genome rearrangements, but the choice of the methods for inferring homology requires care.

    Availability and implementation

    Analysis scripts and code written for this study are available at https://gitlab.com/LPCDRP/rearrangement-homology.pub and https://gitlab.com/LPCDRP/syntement.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less