skip to main content


Title: Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress
Abstract

Various stress conditions induce the nuclear translocation of cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), but its nuclear function in plant stress responses remains elusive. Here we show that GAPC interacts with a transcription factor to promote the expression of heat-inducible genes and heat tolerance in Arabidopsis. GAPC accumulates in the nucleus under heat stress. Overexpression ofGAPCenhances heat tolerance of seedlings and the expression of heat-inducible genes whereas knockout ofGAPCshas opposite effects. Screening of Arabidopsis transcription factors identifies nuclear factor Y subunit C10 (NF-YC10) as a GAPC-binding protein. The effects ofGAPCoverexpression are abolished whenNF-YC10is deficient, the heat-induced nuclear accumulation of GAPC is suppressed, or the GAPC-NF-YC10 interaction is disrupted.GAPCoverexpression also enhances the binding ability of NF-YC10 to its target promoter. The results reveal a cellular and molecular mechanism for the nuclear moonlighting of a glycolytic enzyme in plant response to environmental changes.

 
more » « less
NSF-PAR ID:
10170212
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Overexpression of Arabidopsis dehydration response element binding 1a (DREB1a) is a well‐known approach for developing salinity, cold and/or drought stress tolerance. However, understanding of the genetic mechanisms associated withDREB1aexpression in rice is generally limited. In this study,DREB1a‐associated early responses were investigated in a transgenic rice line harboring cold‐inducibleDREB1aat a gene stacked locus. Although the function of other genes in the stacked locus was not relevant to stress tolerance, this study demonstratesDREB1acan be co‐localized with other genes for multigenic trait enhancement. As expected, the transgenic lines displayed improved tolerance to salinity stress and water withholding as compared with non‐transgenic controls. RNA sequencing and transcriptome analysis showed upregulation of complex transcriptional networks and metabolic reprogramming asDREB1aexpression led to the upregulation of multiple transcription factor gene families, suppression of photosynthesis, and induction of secondary metabolism. In addition to the detection of previously described mechanisms such as production of protective molecules, potentially novel pathways were also revealed. These include jasmonate, auxin, and ethylene signaling, induction ofJAZandWRKYregulons, trehalose synthesis, and polyamine catabolism. These genes regulate various stress responses and ensure timely attenuation of the stress signal. Furthermore, genes associated with heat stress response were downregulated inDREB1aexpressing lines, suggesting antagonism between heat and dehydration stress response pathways. In summary, through a complex transcriptional network, multiple stress signaling pathways are induced by DREB1a that presumably lead to early perception and prompt response toward stress tolerance as well as attenuation of the stress signal to prevent deleterious effects of the runoff response.

     
    more » « less
  2. Abstract

    Sigma factor (SIG) proteins contribute to promoter specificity of the plastid‐encodedRNApolymerase during chloroplast genome transcription. All six members of theSIGfamily, that is,SIG1–SIG6, are nuclear‐encoded proteins targeted to chloroplasts. Sigma factor 2 (SIG2) is a phytochrome‐regulated protein important for stoichiometric control of the expression of plastid‐ and nuclear‐encoded genes that impact plastid development and plant growth and development. AmongSIGfactors,SIG2 is required not only for transcription of chloroplast genes (i.e., anterograde signaling), but also impacts nuclear‐encoded, photosynthesis‐related, and light signaling‐related genes (i.e., retrograde signaling) in response to plastid functional status. AlthoughSIG2 is involved in photomorphogenesis in Arabidopsis, the molecular bases for its role in light signaling that impacts photomorphogenesis and aspects of photosynthesis have only recently begun to be investigated. Previously, we reported thatSIG2 is necessary for phytochrome‐mediated photomorphogenesis specifically under red (R) and far‐red light, thereby suggesting a link between phytochromes and nuclear‐encodedSIG2 in light signaling. To explore transcriptional roles ofSIG2 in R‐dependent growth and development, we performedRNAsequencing analysis to compare gene expression insig2‐2mutant and Col‐0 wild‐type seedlings at two developmental stages (1‐ and 7‐day). We identified a subset of misregulated genes involved in growth, hormonal cross talk, stress responses, and photosynthesis. To investigate the functional relevance of these gene expression analyses, we performed several comparative phenotyping tests. In these analyses, strongsig2mutants showed insensitivity to bioactiveGA3, high intracellular levels of hydrogen peroxide (H2O2) indicative of a stress response, and specific defects in photosynthesis, including elevated levels of cyclic electron flow (CEF) and nonphotochemical quenching (NPQ). We demonstrated thatSIG2 regulates a broader range of physiological responses at the molecular level than previously reported, with specific roles in red‐light‐mediated photomorphogenesis.

     
    more » « less
  3. Abstract

    Plant steroid hormones brassinosteroids (BRs) regulate plant growth and development at many different levels. Recent research has revealed that stress‐responsive NAC (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) transcription factorRD26 is regulated byBRsignaling and antagonizesBES1 in the interaction between growth and drought stress signaling. However, the upstream signaling transduction components that activateRD26 during drought are still unknown. Here, we demonstrate that the function ofRD26 is modulated byGSK3‐like kinaseBIN2 and protein phosphatase 2CABI1. We show thatABI1, a negative regulator inabscisic acid (ABA)signaling, dephosphorylates and destabilizesBIN2 to inhibitBIN2 kinase activity.RD26 protein is stabilized byABAand dehydration in aBIN2‐dependent manner.BIN2 directly interacts and phosphorylatesRD26in vitroandin vivo.BIN2 phosphorylation ofRD26 is required forRD26 transcriptional activation on drought‐responsive genes.RD26 overexpression suppressed the brassinazole (BRZ)  insensitivity ofBIN2 triple mutantbin2 bil1 bil2, andBIN2 function is required for the drought tolerance ofRD26 overexpression plants. Taken together, our data suggest a drought signaling mechanism in which drought stress relievesABI1 inhibition ofBIN2, allowingBIN2 activation. Sequentially,BIN2 phosphorylates and stabilizesRD26 to promote drought stress response.

     
    more » « less
  4. Abstract

    The Heat Shock Factor (HSF) transcription factor family is a central and required component of plant heat stress responses and acquired thermotolerance. The HSF family has dramatically expanded in plant lineages, often including a repertoire of 20 or more genes. Here we assess and compare the composition, heat responsiveness, and chromatin profiles of the HSF families in maize andSetaria viridis(Setaria), two model C4 panicoid grasses. Both species encode a similar number of HSFs, and examples of both conserved and variable expression responses to a heat stress event were observed between the two species. Chromatin accessibility and genome‐wide DNA‐binding profiles were generated to assess the chromatin of HSF family members with distinct responses to heat stress. We observed significant variability for both chromatin accessibility and promoter occupancy within similarly regulated sets of HSFs betweenSetariaand maize, as well as between syntenic pairs of maize HSFs retained following its most recent genome duplication event. Additionally, we observed the widespread presence of TF binding at HSF promoters in control conditions, even at HSFs that are only expressed in response to heat stress. TF‐binding peaks were typically near putative HSF‐binding sites in HSFs upregulated in response to heat stress, but not in stable or not expressed HSFs. These observations collectively support a complex scenario of expansion and subfunctionalization within this transcription factor family and suggest that within‐family HSF transcriptional regulation is a conserved, defining feature of the family.

     
    more » « less
  5. Summary

    Mitochondria play critical roles in generating ATP through oxidative phosphorylation (OXPHOS) and produce both damaging and signaling reactive oxygen species (ROS). They have reduced genomes that encode essential subunits of the OXPHOS machinery. Mitochondrial Transcription tERmination Factor‐related (mTERF) proteins are involved in organelle gene expression, interacting with organellar DNA or RNA.

    We previously found that mutations inArabidopsis thaliana mTERF18/SHOT1enable plants to better tolerate heat and oxidative stresses, presumably due to low ROS production and reduced oxidative damage.

    Here we discover thatshot1mutants have greatly reduced OXPHOS complexes I and IV and reveal that suppressor ofhot1‐41 (SHOT1) binds DNA and localizes to mitochondrial nucleoids, which are disrupted inshot1. Furthermore, three homologues of animal ATPase family AAA domain‐containing protein 3 (ATAD3), which is involved in mitochondrial nucleoid organization, were identified as SHOT1‐interacting proteins. Importantly, disrupting ATAD3 function disrupts nucleoids, reduces accumulation of complex I, and enhances heat tolerance, as is seen inshot1mutants.

    Our data link nucleoid organization to OXPHOS biogenesis and suggest that the common defects inshot1mutants and ATAD3‐disrupted plants lead to critical changes in mitochondrial metabolism and signaling that result in plant heat tolerance.

     
    more » « less