skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gainers and losers of surface and terrestrial water resources in China during 1989–2016
Abstract Data and knowledge of the spatial-temporal dynamics of surface water area (SWA) and terrestrial water storage (TWS) in China are critical for sustainable management of water resources but remain very limited. Here we report annual maps of surface water bodies in China during 1989–2016 at 30m spatial resolution. We find that SWA decreases in water-poor northern China but increases in water-rich southern China during 1989–2016. Our results also reveal the spatial-temporal divergence and consistency between TWS and SWA during 2002–2016. In North China, extensive and continued losses of TWS, together with small to moderate changes of SWA, indicate long-term water stress in the region. Approximately 569 million people live in those areas with deceasing SWA or TWS trends in 2015. Our data set and the findings from this study could be used to support the government and the public to address increasing challenges of water resources and security in China.  more » « less
Award ID(s):
1911955
PAR ID:
10170213
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Central and Southern Europe is undergoing a drying trend driven by increased evapotranspiration and rising air temperatures, even though precipitation levels remain stable. In the Bug River Basin, GRACE observations indicate that total water storage (TWS) declined at a rate of 8.8 ± 5.2 mm/year between 2012 and 2023. To validate this trend, we analysed spatial and temporal discrepancies between TWS-GRACE and water budget-based estimates (TWS-WB). Using ensemble data assimilation techniques, we integrated hydrometeorological data with TWS-GRACE. Regression models developed for TWS simulation were employed to adjust TWS-GRACE estimates. The results demonstrate that TWS fusion effectively mitigates uncertainties in TWS-GRACE caused by its low spatial and temporal resolution. Correlation analysis between TWS-fusion and TWS-GRACE identified errors in GRACE solutions and commonly used autoregressive methods for filling data gaps. Our findings show that model developed in this study significantly improved alignment between TWS-GRACE and TWS-WB, reducing RMSE from 34.7 to 14.9 mm/month. The proposed data fusion approach based on combining GRACE observations with precipitation, evapotranspiration, and runoff data, offers a viable alternative for extending TWS-GRACE time series beyond the GRACE observational period. Additionally, our research provides valuable insights for downscaling GRACE data and addressing challenges in spatial and temporal interpolation, which remain critical in water resource studies. 
    more » « less
  2. Abstract. Data and knowledge of surface water bodies (SWB), including large lakes andreservoirs (surface water areas > 1 km2), are critical forthe management and sustainability of water resources. However, the existingglobal or national dam datasets have large georeferenced coordinate offsetsfor many reservoirs, and some datasets have not reported reservoirs andlakes separately. In this study, we generated China's surface water bodies,Large Dams, Reservoirs, and Lakes (China-LDRL) dataset by analyzing allavailable Landsat imagery in 2019 (19 338 images) in Google Earth Engine andvery-high spatial resolution imagery in Google Earth Pro. There were∼ 3.52 × 106 yearlong SWB polygons in China for2019, only 0.01 × 106 of them (0.43 %) were of large size(> 1 km2). The areas of these large SWB polygons accountedfor 83.54 % of the total 214.92 × 103 km2 yearlongsurface water area (SWA) in China. We identified 2418 large dams, including624 off-stream dams and 1794 on-stream dams, 2194 large reservoirs (16.35 × 103 km2), and 3051 large lakes (73.38 × 103 km2). In general, most of the dams and reservoirs in Chinawere distributed in South China, East China, and Northeast China, whereasmost of lakes were located in West China, the lower Yangtze River basin, andNortheast China. The provision of the reliable, accurate China-LDRL dataseton large reservoirs/dams and lakes will enhance our understanding of waterresources management and water security in China. The China-LDRL dataset ispublicly available at https://doi.org/10.6084/m9.figshare.16964656.v3 (Wang et al., 2021b). 
    more » « less
  3. null (Ed.)
    Conventional methods to analyze a transition matrix do not offer in-depth signals concerning land changes. The land change community needs an effective approach to visualize both the size and intensity of land transitions while considering possible map errors. We propose a framework that integrates error analysis, intensity analysis, and difference components, and then uses the framework to analyze land change in Nanchang, the capital city of Jiangxi province, China. We used remotely sensed data for six categories at four time points: 1989, 2000, 2008, and 2016. We had a confusion matrix for only 2016, which estimated that the map of 2016 had a 12% error, while the temporal difference during 2008–2016 was 22% of the spatial extent. Our tools revealed suspected errors at other years by analyzing the patterns of temporal difference. For example, the largest component of temporal difference was exchange, which could indicate map errors. Our framework identified categories that gained during one time interval then lost during the subsequent time interval, which raised the suspicion of map error. This proposed framework facilitated visualization of the size and intensity of land transitions while illustrating possible map errors that the profession routinely ignores. 
    more » « less
  4. Abstract Global Navigation Satellite System (GNSS) vertical displacements measuring the elastic response of Earth's crust to changes in hydrologic mass have been used to produce terrestrial water storage change (∆TWS) estimates for studying both annual ∆TWS as well as multi‐year trends. However, these estimates require a high observation station density and minimal contamination by nonhydrologic deformation sources. The Gravity Recovery and Climate Experiment (GRACE) is another satellite‐based measurement system that can be used to measure regional TWS fluctuations. The satellites provide highly accurate ∆TWS estimates with global coverage but have a low spatial resolution of ∼400 km. Here, we put forward the mathematical framework for a joint inversion of GNSS vertical displacement time series with GRACE ∆TWS to produce more accurate spatiotemporal maps of ∆TWS, accounting for the observation errors, data gaps, and nonhydrologic signals. We aim to utilize the regional sensitivity to ∆TWS provided by GRACE mascon solutions with higher spatial resolution provided by GNSS observations. Our approach utilizes a continuous wavelet transform to decompose signals into their building blocks and separately invert for long‐term and short‐term mass variations. This allows us to preserve trends, annual, interannual, and multi‐year changes in TWS that were previously challenging to capture by satellite‐based measurement systems or hydrological models, alone. We focus our study in California, USA, which has a dense GNSS network and where recurrent, intense droughts put pressure on freshwater supplies. We highlight the advantages of our joint inversion results for a tectonically active study region by comparing them against inversion results that use only GNSS vertical deformation as well as with maps of ∆TWS from hydrological models and other GRACE solutions. We find that our joint inversion framework results in a solution that is regionally consistent with the GRACE ∆TWS solutions at different temporal scales but has an increased spatial resolution that allows us to differentiate between regions of high and low mass change better than using GRACE alone. 
    more » « less
  5. Abstract Water resources sustainability in High Mountain Asia (HMA) surrounding the Tibetan Plateau (TP)—known as Asia’s water tower—has triggered widespread concerns because HMA protects millions of people against water stress 1,2 . However, the mechanisms behind the heterogeneous trends observed in terrestrial water storage (TWS) over the TP remain poorly understood. Here we use a Lagrangian particle dispersion model and satellite observations to attribute about 1 Gt of monthly TWS decline in the southern TP during 2003–2016 to westerlies-carried deficit in precipitation minus evaporation (PME) from the southeast North Atlantic. We further show that HMA blocks the propagation of PME deficit into the central TP, causing a monthly TWS increase by about 0.5 Gt. Furthermore, warming-induced snow and glacial melt as well as drying-induced TWS depletion in HMA weaken the blocking of HMA’s mountains, causing persistent northward expansion of the TP’s TWS deficit since 2009. Future projections under two emissions scenarios verified by satellite observations during 2020–2021 indicate that, by the end of the twenty-first century, up to 84% (for scenario SSP245) and 97% (for scenario SSP585) of the TP could be afflicted by TWS deficits. Our findings indicate a trajectory towards unsustainable water systems in HMA that could exacerbate downstream water stress. 
    more » « less