skip to main content


Title: Sand deposits reveal great earthquakes and tsunamis at Mexican Pacific Coast
Abstract

Globally, instrumentally based assessments of tsunamigenic potential of subduction zones have underestimated the magnitude and frequency of great events because of their short time record. Historical and sediment records of large earthquakes and tsunamis have expanded the temporal data and estimated size of these events. Instrumental records suggests that the Mexican Subduction earthquakes produce relatively small tsunamis, however historical records and now geologic evidence suggest that great earthquakes and tsunamis have whipped the Pacific coast of Mexico in the past. The sediment marks of centuries old-tsunamis validate historical records and indicate that large tsunamigenic earthquakes have shaken the Guerrero-Oaxaca region in southern Mexico and had an impact on a bigger stretch of the coast than previously suspected. We present the first geologic evidence of great tsunamis near the trench of a subduction zone previously underestimated as potential source for great earthquakes and tsunamis. Two sandy tsunami deposits extend over 1.5 km inland of the coast. The youngest tsunami deposit is associated with the 1787 great earthquake, M 8.6, producing a giant tsunami that poured over the coast flooding 500 km alongshore the Mexican Pacific coast and up to 6 km inland. The oldest event from a less historically documented event occurred in 1537. The 1787 earthquake, and tsunami and a probable predecessor in 1537, suggest a plausible recurrence interval of 250 years. We prove that the common believe that great tsunamis do not occur on the Mexican Pacific coast cannot be sustained.

 
more » « less
NSF-PAR ID:
10170218
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We demonstrate the efficacy of a Bayesian statistical inversion framework for reconstructing the likely characteristics of large pre‐instrumentation earthquakes from historical records of tsunami observations. Our framework is designed and implemented for the estimation of the location and magnitude of seismic events from anecdotal accounts of tsunamis including shoreline wave arrival times, heights, and inundation lengths over a variety of spatially separated observation locations. The primary advantage of this approach is that all of the assumptions made in the inversion process are incorporated explicitly into the mathematical framework. As an initial test case we use our framework to reconstruct the great 1852 earthquake and tsunami of eastern Indonesia. Relying on the assumption that these observations were produced by a subducting thrust event, the posterior distribution indicates that the observables were the result of a massive mega‐thrust event with magnitude near 8.8 Mw and a likely rupture zone in the north‐eastern Banda arc. The distribution of predicted epicentral locations overlaps with the largest major seismic gap in the region as indicated by instrumentally recorded seismic events. These results provide a geologic and seismic context for hazard risk assessment in coastal communities experiencing growing population and urbanization in Indonesia. In addition, the methodology demonstrated here highlights the potential for applying a Bayesian approach to enhance understanding of the seismic history of other subduction zones around the world.

     
    more » « less
  2. Abstract

    From California to British Columbia, the Pacific Northwest coast bears an omnipresent earthquake and tsunami hazard from the Cascadia subduction zone. Multiple lines of evidence suggests that magnitude eight and greater megathrust earthquakes have occurred ‐ the most recent being 321 years ago (i.e., 1700 A.D.). Outstanding questions for the next great megathrust event include where it will initiate, what conditions are favorable for rupture to span the convergent margin, and how much slip may be expected. We develop the first 3‐D fully dynamic rupture simulations for the Cascadia subduction zone that are driven by fault stress, strength and friction to address these questions. The initial dynamic stress drop distribution in our simulations is constrained by geodetic coupling models, with segment locations taken from geologic analyses. We document the sensitivity of nucleation location and stress drop to the final seismic moment and coseismic subsidence amplitudes. We find that the final earthquake size strongly depends on the amount of slip deficit in the central Cascadia region, which is inferred to be creeping interseismically, for a given initiation location in southern or northern Cascadia. Several simulations are also presented here that can closely approximate recorded coastal subsidence from the 1700 A.D. event without invoking localized high‐stress asperities along the down‐dip locked region of the megathrust. These results can be used to inform earthquake and tsunami hazards for not only Cascadia, but other subduction zones that have limited seismic observations but a wealth of geodetic inference.

     
    more » « less
  3. SUMMARY We recently found the original Omori seismograms recorded at Hongo, Tokyo, of the 1922 Atacama, Chile, earthquake (MS = 8.3) in the historical seismogram archive of the Earthquake Research Institute (ERI) of the University of Tokyo. These recordings enable a quantitative investigation of long-period seismic radiation from the 1922 earthquake. We document and provide interpretation of these seismograms together with a few other seismograms from Mizusawa, Japan, Uppsala, Sweden, Strasbourg, France, Zi-ka-wei, China and De Bilt, Netherlands. The 1922 event is of significant historical interest concerning the cause of tsunami, discovery of G wave, and study of various seismic phase and first-motion data. Also, because of its spatial proximity to the 1943, 1995 and 2015 great earthquakes in Chile, the 1922 event provides useful information on similarity and variability of great earthquakes on a subduction-zone boundary. The 1922 source region, having previously ruptured in 1796 and 1819, is considered to have significant seismic hazard. The focus of this paper is to document the 1922 seismograms so that they can be used for further seismological studies on global subduction zones. Since the instrument constants of the Omori seismographs were only incompletely documented, we estimate them using the waveforms of the observed records, a calibration pulse recorded on the seismogram and the waveforms of better calibrated Uppsala Wiechert seismograms. Comparison of the Hongo Omori seismograms with those of the 1995 Antofagasta, Chile, earthquake (Mw = 8.0) and the 2015 Illapel, Chile, earthquake (Mw = 8.3) suggests that the 1922 event is similar to the 1995 and 2015 events in mechanism (i.e. on the plate boundary megathrust) and rupture characteristics (i.e. not a tsunami earthquake) with Mw = 8.6 ± 0.25. However, the initial fine scale rupture process varies significantly from event to event. The G1 and G2, and R1 and R2 of the 1922 event are comparable in amplitude, suggesting a bilateral rupture, which is uncommon for large megathrust earthquakes. 
    more » « less
  4. null (Ed.)
    Short historical and even shorter instrumental records limit our perspective of earthquake maximum magnitude and recurrence and thus are inadequate to fully characterize Earth’s complex and multiscale seismic behavior and its consequences. Examining prehistoric events preserved in the geological record is essential to reconstruct the long-term history of earthquakes and to deliver observational data that help to reduce epistemic uncertainties in seismic hazard assessment for long return periods. “Submarine paleoseismology” is a promising approach to investigate deposits from the deep sea, where earthquakes leave traces preserved in the stratigraphic succession. However, at present we lack the comprehensive data sets and long-term records that allow for conclusive distinctions between quality and completeness of the paleoseismic archives. Motivated by the mission to fill the gap in long-term records of giant (Mw 9 class) earthquakes, International Ocean Discovery Program (IODP) Expedition 386, Japan Trench Paleoseismology, aims at testing and developing submarine paleoseismology in the Japan Trench. We will implement a multicoring approach by Mission Specific Platform shallow subsurface (40 m) giant piston coring to recover the continuous upper Pleistocene to Holocene stratigraphic successions of trench-fill basins along an axis-parallel transect of the 7–8 km deep trench. The cores from 18 proposed primary (and/or 13 alternate) sites will be used for multimethod applications to characterize event deposits for which the detailed stratigraphic expressions and spatiotemporal distribution will be analyzed for proxy evidence of earthquakes. Sediment remobilization related to the 2011 Mw 9.0 Tohoku-Oki earthquake and the respective deposits are preserved in trench basins formed by flexural bending of the subducting Pacific plate. These basins are ideal study areas for testing event deposits for earthquake triggering because they are poorly connected for sediment transport from the shelf and experience high sedimentation rates and low benthos activity (and thus high preservation potential) in the hadal environment. Results from conventional coring covering the last ~1,500 y reveal good agreement between the sedimentary record and historical documents. Subbottom profile images are consistent with basin-fill successions of episodic muddy turbidite deposition and thus define clear targets for paleoseismologic investigations on longer timescales accessible only by IODP coring. We will apply, further refine, and implement new methods for establishing event stratigraphy in the deep sea and for recognizing giant versus smaller earthquakes versus other driving mechanisms. Our results can potentially produce a fascinating record that unravels an earthquake history that is 10–100 times longer than currently available information. This would contribute to a tremendous advance in the understanding of the recurrence pattern of giant earthquakes and earthquake-induced geohazards globally and provide new constraints on sediment and carbon flux of event-triggered sediment mobilization to a deep-sea trench and its influence on the hadal environment. 
    more » « less
  5. Tsunamis are a series of long gravity waves generated by abrupt displacement of a significant volume of water that propagate under the action of gravity, returning the water layer to an equilibrium position. Differently from common wind-generated waves, tsunamis are characterized by large wavelengths (ranging from tens to hundreds of km) and long periods (ranging from minutes to hours) with water motions extending across the entire depth range of the water layer. Several natural phenomena such as earthquakes, landslides, volcanic eruptions, rapid changes of atmospheric pressure (meteotsunami), or asteroids impacts can be the source of the initial water displacement of a tsunami; among these, the most frequent involves submarine earthquakes. Most tsunamigenic earthquakes occur near Earth’s convergent plate tectonic boundaries (Fig. 1), at subduction zones, where an oceanic plate underthrusts another plate. During the last 15 years (2004-2019), subduction zones hosted a particularly high number of great magnitude tsunamigenic earthquakes with catastrophic consequences in terms of casualties and damages. This spate of activity is consistent with normal statistical fluctuations of seismicity rate over the past century (Lay, 2015), however, the collective tsunami impact was particularly severe in terms of fatalities, people missing, building destruction, and damage to infrastructures (e.g., ports, power plants, coastal towns). The largest tsunamis since 2004 were those ensuing from the 2004 Mw 9.2 Sumatra-Andaman (Indonesia) and the 2011 Mw 9.0 Tohoku (Japan) earthquakes (e.g., Lorito et al., 2016), causing 220,000+ and 15,000+ victims, respectively. 
    more » « less