When students repeatedly reflect, it can enhance their metacognitive abilities, including self-regulatory skills of planning, monitoring, and evaluating. In a fluid mechanics course for undergraduates at a large southeastern U.S. university, in-class problem solving in a flipped classroom was coupled with intentional metacognitive skills instruction and repeated reflection to enhance metacognition. The weekly reflective responses were coded by two analysts to identify the recurring themes and uncover evidence of the development and/or reinforcement of self-regulating behaviors for academic management. To enable a comparison, a flipped classroom without the metacognitive instruction and repeated reflection was also implemented (i.e., non-intervention group). The two cohorts completed identical final exams. Based on our preliminary analysis with year one data, a statistically and practically-significant difference between the two cohorts was found with the free-response scores on the final exam in favor of the intervention cohort that had received the metacognitive support ( p < 0.0005; Cohen's d = 0.72). Also, the Metacognitive Activities Inventory (MCAI) indicated a significantly-higher positive change in self-regulatory behavior for the intervention cohort ( p = 0.001; d = 0.50). Focus groups were conducted to gather students’ perspectives on the reflective activity, with differences found by demographic group. In addition, a significantly higher proportion of females (versus males) viewedmore »
Assessment of Metacognitive Skills in Design and Manufacturing
Metacognition is the understanding of your own knowledge including what knowledge you do not have and what knowledge you do have. This includes knowledge of strategies and regulation of one’s own cognition. Studying metacognition is important because higher-order thinking is commonly used, and problem-solving skills are positively correlated with metacognition. A positive previous disposition to metacognition can improve problem-solving skills. Metacognition is a key skill in design and manufacturing, as teams of engineers must solve complex problems. Moreover, metacognition increases individual and team performance and can lead to more original ideas. This study discusses the assessment of metacognitive skills in engineering students by having the students participate in hands-on and virtual reality activities related to design and manufacturing. The study is guided by two research questions: (1) do the proposed activities affect students’ metacognition in terms of monitoring, awareness, planning, self-checking, or strategy selection, and (2) are there other components of metacognition that are affected by the design and manufacturing activities? The hypothesis is that the participation in the proposed activities will improve problem-solving skills and metacognitive awareness of the engineering students. A total of 34 undergraduate students participated in the study. Of these, 32 were male and 2 were more »
- Award ID(s):
- 1830741
- Publication Date:
- NSF-PAR ID:
- 10170318
- Journal Name:
- ASEE Annual Conference proceedings
- ISSN:
- 1524-4644
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Problem-solving is an iterative process that requires brainstorming, analysis of the problem, development and testing of solutions. It relies on under-standing what is known and what is unknown about the problem. That knowledge of the knowns and unknowns is called metacognition. Today’s engineers must understand their own metacognition and that of other team members to derive the best solutions for engineering problems given the different constraints. Engineers working in design and manufacturing fields confront challenges due to a lack of important metacognitive understanding of their own and their team’s problem-solving skills. This research suggests measuring metacognition within teams by using manufacturing simulations with virtual reality and eye tracking
-
Early in the pandemic we gathered a group of educators to create and share at-home educational opportunities for families to design and make STEAM projects while at home. As this effort, CoBuild19, continued, we decided to extend our offerings to include basic computer programming. To accomplish this, we created an offering called the Design with Code Club (DwCC). We structured DwCC to be different from other common coding offerings in that we wanted the main focus to be on kids designing solutions to problems that might include the use of technology and coding. We were purposeful in this decision for two main reasons. First, we wanted to make our coding club more interesting to girls, where previous research demonstrates their interest in designing solutions. Second, we wanted this effort to be different from most programming instruction, where coding activities use programming as the core of instruction and application in authentic and student-selected contexts plays a secondary role. DwCC was set up so that each of the first four weeks had a different larger challenge that was COVID-19 related and sessions unfolded with alternating smaller challenges, discussion around design and coding instruction that would develop their skills and knowledge of micro:bitmore »
-
Engineers are called to play an important role in addressing the complex problems of our global society, such as climate change and global health care. In order to adequately address these complex problems, engineers must be able to identify and incorporate into their decision making relevant aspects of systems in which their work is contextualized, a skill often referred to as systems thinking. However, within engineering, research on systems thinking tends to emphasize the ability to recognize potentially relevant constituent elements and parts of an engineering problem, rather than how these constituent elements and parts are embedded in broader economic, sociocultural, and temporal contexts and how all of these must inform decision making about problems and solutions. Additionally, some elements of systems thinking, such as an awareness of a particular sociocultural context or the coordination of work among members of a cross-disciplinary team, are not always recognized as core engineering skills, which alienates those whose strengths and passions are related to, for example, engineering systems that consider and impact social change. Studies show that women and minorities, groups underrepresented within engineering, are drawn to engineering in part for its potential to address important social issues. Emphasizing the importance of systemsmore »
-
Gardner, Stephanie (Ed.)Stronger metacognition, or awareness and regulation of thinking, is related to higher academic achievement. Most metacognition research has focused at the level of the individual learner. However, a few studies have shown that students working in small groups can stimulate metacognition in one another, leading to improved learning. Given the increased adoption of interactive group work in life science classrooms, there is a need to study the role of social metacognition, or the awareness and regulation of the thinking of others, in this context. Guided by the frameworks of social metacognition and evidence-based reasoning, we asked: 1) What metacognitive utterances (words, phrases, statements, or questions) do students use during small-group problem solving in an upper-division biology course? 2) Which metacognitive utterances are associated with small groups sharing higher-quality reasoning in an upper-division biology classroom? We used discourse analysis to examine transcripts from two groups of three students during breakout sessions. By coding for metacognition, we identified seven types of metacognitive utterances. By coding for reasoning, we uncovered four categories of metacognitive utterances associated with higher-quality reasoning. We offer suggestions for life science educators interested in promoting social metacognition during small-group problem solving.