ABSTRACT We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He i, and Ca ii. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
more »
« less
The mystery of photometric twins DES17X1boj and DES16E2bjy
ABSTRACT We present an analysis of DES17X1boj and DES16E2bjy, two peculiar transients discovered by the Dark Energy Survey (DES). They exhibit nearly identical double-peaked light curves that reach very different maximum luminosities (Mr = −15.4 and −17.9, respectively). The light-curve evolution of these events is highly atypical and has not been reported before. The transients are found in different host environments: DES17X1boj was found near the nucleus of a spiral galaxy, while DES16E2bjy is located in the outskirts of a passive red galaxy. Early photometric data are well fitted with a blackbody and the resulting moderate photospheric expansion velocities (1800 km s−1 for DES17X1boj and 4800 km s−1 for DES16E2bjy) suggest an explosive or eruptive origin. Additionally, a feature identified as high-velocity Ca ii absorption ($$v$$ ≈ 9400 km s−1) in the near-peak spectrum of DES17X1boj may imply that it is a supernova. While similar light-curve evolution suggests a similar physical origin for these two transients, we are not able to identify or characterize the progenitors.
more »
« less
- PAR ID:
- 10170346
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 494
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 5576 to 5589
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present Lightcurve Anomaly Identification and Similarity Search (LAISS), an automated pipeline to detect anomalous astrophysical transients in real-time data streams. We deploy our anomaly detection model on the nightly Zwicky Transient Facility (ZTF) Alert Stream via the ANTARES broker, identifying a manageable ∼1–5 candidates per night for expert vetting and coordinating follow-up observations. Our method leverages statistical light-curve and contextual host galaxy features within a random forest classifier, tagging transients of rare classes (spectroscopicanomalies), of uncommon host galaxy environments (contextualanomalies), and of peculiar or interaction-powered phenomena (behavioralanomalies). Moreover, we demonstrate the power of a low-latency (∼ms) approximate similarity search method to find transient analogs with similar light-curve evolution and host galaxy environments. We use analogs for data-driven discovery, characterization, (re)classification, and imputation in retrospective and real-time searches. To date, we have identified ∼50 previously known and previously missed rare transients from real-time and retrospective searches, including but not limited to superluminous supernovae (SLSNe), tidal disruption events, SNe IIn, SNe IIb, SNe I-CSM, SNe Ia-91bg-like, SNe Ib, SNe Ic, SNe Ic-BL, and M31 novae. Lastly, we report the discovery of 325 total transients, all observed between 2018 and 2021 and absent from public catalogs (∼1% of all ZTF Astronomical Transient reports to the Transient Name Server through 2021). These methods enable a systematic approach to finding the “needle in the haystack” in large-volume data streams. Because of its integration with the ANTARES broker,LAISSis built to detect exciting transients in Rubin data.more » « less
-
We present photometric and spectroscopic observations of the Type IIn supernova SN 2019zrk (also known as ZTF 20aacbyec). The SN shows a > 100 day precursor, with a slow rise, followed by a rapid rise to M ≈ −19.2 in the r and g bands. The post-peak light-curve decline is well fit with an exponential decay with a timescale of ∼39 days, but it shows prominent undulations, with an amplitude of ∼1 mag. Both the light curve and spectra are dominated by an interaction with a dense circumstellar medium (CSM), probably from previous mass ejections. The spectra evolve from a scattering-dominated Type IIn spectrum to a spectrum with strong P-Cygni absorptions. The expansion velocity is high, ∼16 000 km s −1 , even in the last spectra. The last spectrum ∼110 days after the main eruption reveals no evidence for advanced nucleosynthesis. From analysis of the spectra and light curves, we estimate the mass-loss rate to be ∼4 × 10 −2 M ⊙ yr −1 for a CSM velocity of 100 km s −1 , and a CSM mass of 1 M ⊙ . We find strong similarities for both the precursor, general light curve, and spectral evolution with SN 2009ip and similar SNe, although SN 2019zrk displays a brighter peak magnitude. Different scenarios for the nature of the 09ip-class of SNe, based on pulsational pair instability eruptions, wave heating, and mergers, are discussed.more » « less
-
In this paper we report the results of the first ~four years of spectroscopic and photometric monitoring of the Type IIn supernova SN 2015da (also known as PSN J13522411+3941286, or iPTF16tu). The supernova exploded in the nearby spiral galaxy NGC 5337 in a relatively highly extinguished environment. The transient showed prominent narrow Balmer lines in emission at all times and a slow rise to maximum in all bands. In addition, early observations performed by amateur astronomers give a very well-constrained explosion epoch. The observables are consistent with continuous interaction between the supernova ejecta and a dense and extended H-rich circumstellar medium. The presence of such an extended and dense medium is difficult to reconcile with standard stellar evolution models, since the metallicity at the position of SN 2015da seems to be slightly subsolar. Interaction is likely the mechanism powering the light curve, as confirmed by the analysis of the pseudo bolometric light curve, which gives a total radiated energy ≳ 10 51 erg. Modeling the light curve in the context of a supernova shock breakout through a dense circumstellar medium allowed us to infer the mass of the prexisting gas to be ≃ 8 M ⊙ , with an extreme mass-loss rate for the progenitor star ≃0.6 M ⊙ yr −1 , suggesting that most of the circumstellar gas was produced during multiple eruptive events. Near- and mid-infrared observations reveal a fluxexcess in these domains, similar to those observed in SN 2010jl and other interacting transients, likely due to preexisting radiatively heated dust surrounding the supernova. By modeling the infrared excess, we infer a mass ≳ 0.4 × 10 −3 M ⊙ for the dust.more » « less
-
ABSTRACT We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼ 22–25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s−1, while the second, more energetic event ejected material at ∼4500 km s−1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 M⊙. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.more » « less
An official website of the United States government

