skip to main content


Title: The mystery of photometric twins DES17X1boj and DES16E2bjy
ABSTRACT We present an analysis of DES17X1boj and DES16E2bjy, two peculiar transients discovered by the Dark Energy Survey (DES). They exhibit nearly identical double-peaked light curves that reach very different maximum luminosities (Mr = −15.4 and −17.9, respectively). The light-curve evolution of these events is highly atypical and has not been reported before. The transients are found in different host environments: DES17X1boj was found near the nucleus of a spiral galaxy, while DES16E2bjy is located in the outskirts of a passive red galaxy. Early photometric data are well fitted with a blackbody and the resulting moderate photospheric expansion velocities (1800  km s−1 for DES17X1boj and 4800  km s−1 for DES16E2bjy) suggest an explosive or eruptive origin. Additionally, a feature identified as high-velocity Ca ii absorption ($v$ ≈ 9400 km s−1) in the near-peak spectrum of DES17X1boj may imply that it is a supernova. While similar light-curve evolution suggests a similar physical origin for these two transients, we are not able to identify or characterize the progenitors.  more » « less
Award ID(s):
1815935 1518052
NSF-PAR ID:
10170346
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
494
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5576 to 5589
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He i, and Ca ii. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.

     
    more » « less
  2. In this paper we report the results of the first ~four years of spectroscopic and photometric monitoring of the Type IIn supernova SN 2015da (also known as PSN J13522411+3941286, or iPTF16tu). The supernova exploded in the nearby spiral galaxy NGC 5337 in a relatively highly extinguished environment. The transient showed prominent narrow Balmer lines in emission at all times and a slow rise to maximum in all bands. In addition, early observations performed by amateur astronomers give a very well-constrained explosion epoch. The observables are consistent with continuous interaction between the supernova ejecta and a dense and extended H-rich circumstellar medium. The presence of such an extended and dense medium is difficult to reconcile with standard stellar evolution models, since the metallicity at the position of SN 2015da seems to be slightly subsolar. Interaction is likely the mechanism powering the light curve, as confirmed by the analysis of the pseudo bolometric light curve, which gives a total radiated energy ≳ 10 51 erg. Modeling the light curve in the context of a supernova shock breakout through a dense circumstellar medium allowed us to infer the mass of the prexisting gas to be ≃ 8 M ⊙ , with an extreme mass-loss rate for the progenitor star ≃0.6 M ⊙ yr −1 , suggesting that most of the circumstellar gas was produced during multiple eruptive events. Near- and mid-infrared observations reveal a fluxexcess in these domains, similar to those observed in SN 2010jl and other interacting transients, likely due to preexisting radiatively heated dust surrounding the supernova. By modeling the infrared excess, we infer a mass ≳ 0.4 × 10 −3 M ⊙ for the dust. 
    more » « less
  3. Abstract

    Luminous fast blue optical transients (LFBOTs) such as AT2018cow form a rare class of engine-powered explosions of uncertain origin. A hallmark feature of these events is radio/millimeter synchrotron emission powered by the interaction of fast ≳0.1cejecta and dense circumstellar material (CSM) extending to large radii ≳1016cm surrounding the progenitor. Assuming this CSM to be an outflow from the progenitor, we show that dust grains up to ∼1μm in size can form in the outflow in the years before the explosion. This dusty CSM would attenuate the transient’s ultraviolet emission prior to peak light, before being destroyed by the rising luminosity, reddening the premaximum colors (consistent with the premaximum red-to-blue color evolution of the LFBOT candidate MUSSES2020J). Reradiation by the dust before being destroyed generates a near-infrared (NIR) “echo” of luminosity ∼1041–1042erg s−1lasting weeks, which is detectable over the transient’s rapidly fading blue continuum. We show that this dust echo is compatible with the previously unexplained NIR excess observed in AT2018cow. The gradual decay of the early NIR light curve can result from CSM, which is concentrated in a wide-angle equatorial outflow or torus, consistent with the highly aspherical geometry of AT2018cow’s ejecta. Premaximum optical/UV and NIR follow-up of LFBOTs provide a new probe of their CSM environments and place additional constraints on their progenitors.

     
    more » « less
  4. ABSTRACT We present the results of a multiwavelength follow-up campaign for the luminous nuclear transient Gaia16aax, which was first identified in 2016 January. The transient is spatially consistent with the nucleus of an active galaxy at z = 0.25, hosting a black hole of mass ${\sim }6\times 10^8\, \mathrm{M}_\odot$. The nucleus brightened by more than 1 mag in the Gaia G band over a time-scale of less than 1 yr, before fading back to its pre-outburst state over the following 3 yr. The optical spectra of the source show broad Balmer lines similar to the ones present in a pre-outburst spectrum. During the outburst, the H α and H β emission lines develop a secondary peak. We also report on the discovery of two transients with similar light-curve evolution and spectra: Gaia16aka and Gaia16ajq. We consider possible scenarios to explain the observed outbursts. We exclude that the transient event could be caused by a microlensing event, variable dust absorption or a tidal encounter between a neutron star and a stellar mass black hole in the accretion disc. We consider variability in the accretion flow in the inner part of the disc, or a tidal disruption event of a star ${\ge } 1 \, \mathrm{M}_{\odot }$ by a rapidly spinning supermassive black hole as the most plausible scenarios. We note that the similarity between the light curves of the three Gaia transients may be a function of the Gaia alerts selection criteria. 
    more » « less
  5. Context. The 1°.3 (G1.3) and 1°.6 (G1.6) cloud complexes in the central molecular zone (CMZ) of our Galaxy have been proposed to possibly reside at the intersection region of the X1 and X2 orbits for several reasons. This includes the detection of co-spatial low- and high-velocity clouds, high velocity dispersion, high fractional molecular abundances of shock-tracing molecules, and kinetic temperatures that are higher than for usual CMZ clouds. Aims. By investigating the morphology and deriving physical properties as well as chemical composition, we want to find the origin of the turbulent gas and, in particular, whether evidence of an interaction between clouds can be identified. Methods. We mapped both cloud complexes in molecular lines in the frequency range from 85 to 117 GHz with the IRAM 30 m telescope. The APEX 12m telescope was used to observe higher frequency transitions between 210 and 475 GHz from selected molecules that are emitted from higher energy levels. We performed non-local thermodynamic equilibrium (non-LTE) modelling of the emission of an ensemble of CH 3 CN lines to derive kinetic temperatures and H 2 volume densities. These were used as starting points for non-LTE modelling of other molecules, for which column densities and abundances were determined and compared with values found for other sources in the CMZ. Results. The kinematic structure of G1.3 reveals an ‘emission bridge’ at intermediate velocities (~150 km s −1 ) connecting low-velocity (~100 km s −1 ) and high-velocity (~180 km s −1 ) gas and an overall fluffy shell-like structure. These may represent observational evidence of cloud-cloud interactions. Low- and high-velocity gas components in G1.6 do not show this type of evidence of an interaction, suggesting that they are spatially separated. We selected three positions in each cloud complex for further analysis. Each position reveals several gas components at various peak velocities and of various line widths. We derived kinetic temperatures of 60–100 K and H 2 volume densities of 10 4 –10 5 cm −3 in both complexes. Molecular abundances relative to H 2 suggest a similar chemistry of the two clouds, which is moreover similar to that of other GC clouds and, especially, agrees well with that of G+0.693 and G−0.11. Conclusions. We conclude that G1.3 may indeed exhibit signs of cloud-cloud interactions. In particular, we propose an interaction of gas that is accreted from the near-side dust lane to the CMZ, with gas pre-existing at this location. Low- and high-velocity components in G1.6 are rather coincidentally observed along the same line of sight. They may be associated with either overshot decelerated gas from the far-side dust line or actual CMZ gas and high-velocity gas moving on a dust lane. These scenarios would be in agreement with numerical simulations. 
    more » « less