skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dog Sit! Domestic Dogs (Canis familiaris) Follow a Robot's Sit Commands
As personal social robots become more prevalent, the need for the designs of these systems to explicitly consider pets become more apparent. However, it is not known whether dogs would interact with a social robot. In two experiments, we investigate whether dogs respond to a social robot after the robot called their names, and whether dogs follow the ‘sit’ commands given by the robot. We conducted a between-subjects study (n = 34) to compare dogs’ reactions to a social robot with a loudspeaker. Results indicate that dogs gazed at the robot more often after the robot called their names than after the loudspeaker called their names. Dogs followed the ‘sit’ commands more often given by the robot than given by the loudspeaker. The contribution of this study is that it is the first study to provide preliminary evidence that 1) dogs showed positive behaviors to social robots and that 2) social robots could influence dog’s behaviors. This study enhance the understanding of the nature of the social interactions between humans and social robots from the evolutionary approach. Possible explanations for the observed behavior might point toward dogs perceiving robots as agents, the embodiment of the robot creating pressure for socialized responses, or the multimodal (i.e., verbal and visual) cues provided by the robot being more attractive than our control condition.  more » « less
Award ID(s):
1813651 1659085
PAR ID:
10170649
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM/IEEE International Conference on Human-Robot Interaction
Page Range / eLocation ID:
16 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In social robotics, a pivotal focus is enabling robots to engage with humans in a more natural and seamless manner. The emergence of advanced large language models (LLMs) has driven significant advancements in integrating natural language understanding capabilities into social robots. This paper presents a system for speech-guided sequential planning in pick and place tasks, which are found across a range of application areas. The proposed system uses Large Language Model Meta AI (Llama3) to interpret voice commands by extracting essential details through parsing and decoding the commands into sequential actions. These actions are sent to DRL-VO, a learning-based control policy built on the Robot Operating System (ROS) that allows a robot to autonomously navigate through social spaces with static infrastructure and crowds of people. We demonstrate the effectiveness of the system in simulation experiment using Turtlebot 2 in ROS1 and Turtlebot 3 in ROS2. We conduct hardware trials using a Clearpath Robotics Jackal UGV, highlighting its potential for real-world deployment in scenarios requiring flexible and interactive robotic behaviors. 
    more » « less
  2. As social robots become increasingly prevalent in day-to-day environments, they will participate in conversations and appropriately manage the information shared with them. However, little is known about how robots might appropriately discern the sensitivity of information, which has major implications for human-robot trust. As a first step to address a part of this issue, we designed a privacy controller, CONFIDANT, for conversational social robots, capable of using contextual metadata (e.g., sentiment, relationships, topic) from conversations to model privacy boundaries. Afterwards, we conducted two crowdsourced user studies. The first study (n = 174) focused on whether a variety of human-human interaction scenarios were perceived as either private/sensitive or non-private/non-sensitive. The findings from our first study were used to generate association rules. Our second study (n = 95) evaluated the effectiveness and accuracy of the privacy controller in human-robot interaction scenarios by comparing a robot that used our privacy controller against a baseline robot with no privacy controls. Our results demonstrate that the robot with the privacy controller outperforms the robot without the privacy controller in privacy-awareness, trustworthiness, and social-awareness. We conclude that the integration of privacy controllers in authentic human-robot conversations can allow for more trustworthy robots. This initial privacy controller will serve as a foundation for more complex solutions. 
    more » « less
  3. null (Ed.)
    Robots are entering various domains of human societies, potentially unfolding more opportunities for people to perceive robots as social agents. We expect that having robots in proximity would create unique social learning situations where humans spontaneously observe and imitate robots’ behaviors. At times, these occurrences of humans’ imitating robot behaviors may result in a spread of unsafe or unethical behaviors among humans. For responsible robot designing, therefore, we argue that it is essential to understand physical and psychological triggers of social learning in robot design. Grounded in the existing literature of social learning and the uncanny valley theories, we discuss the human-likeness of robot appearance and affective responses associated with robot appearance as likely factors that either facilitate or deter social learning. We propose practical considerations for social learning and robot design. 
    more » « less
  4. It is imperative that robots can understand natural language commands issued by humans. Such commands typically contain verbs that signify what action should be performed on a given object and that are applicable to many objects. We propose a method for generalizing manipulation skills to novel objects using verbs. Our method learns a probabilistic classifier that determines whether a given object trajectory can be described by a specific verb. We show that this classifier accurately generalizes to novel object categories with an average accuracy of 76.69% across 13 object categories and 14 verbs. We then perform policy search over the object kinematics to find an object trajectory that maximizes classifier prediction for a given verb. Our method allows a robot to generate a trajectory for a novel object based on a verb, which can then be used as input to a motion planner. We show that our model can generate trajectories that are usable for executing five verb commands applied to novel instances of two different object categories on a real robot. 
    more » « less
  5. To better prepare future generations, knowledge about computers and programming are one of the many skills that are part of almost all Science, Technology, Engineering, and Mathematic programs; however, teaching and learning programming is a complex task that is generally considered difficult by students and teachers alike. One approach to engage and inspire students from a variety of backgrounds is the use of educational robots. Unfortunately, previous research presents mixed results on the effectiveness of educational robots on student learning. One possibility for this lack of clarity may be because students have a wide variety of styles of learning. It is possible that the use of kinesthetic feedback, in addition to the normally used visual feedback, may improve learning with educational robots by providing a richer, multi-modal experience that may appeal to a larger number of students with different learning styles. It is also possible, however, that the addition of kinesthetic feedback, and how it may interfere with the visual feedback, may decrease a student’s ability to interpret the program commands being executed by a robot, which is critical for program debugging. In this work, we investigated whether human participants were able to accurately determine a sequence of program commands performed by a robot when both kinesthetic and visual feedback were being used together. Command recall and end point location determination were compared to the typically used visual-only method, as well as a narrative description. Results from 10 sighted participants indicated that individuals were able to accurately determine a sequence of movement commands and their magnitude when using combined kinesthetic + visual feedback. Participants’ recall accuracy of program commands was actually better with kinesthetic + visual feedback than just visual feedback. Although the recall accuracy was even better with the narrative description, this was primarily due to participants confusing an absolute rotation command with a relative rotation command with the kinesthetic + visual feedback. Participants’ zone location accuracy of the end point after a command was executed was significantly better for both the kinesthetic + visual feedback and narrative methods compared to the visual-only method. Together, these results suggest that the use of both kinesthetic + visual feedback improves an individual’s ability to interpret program commands, rather than decreases it. 
    more » « less