skip to main content


Title: A Functioning Macroscopic “Rubik's Cube” Assembled via Controllable Dynamic Covalent Interactions
Abstract

The dynamic behavior of a macroscopic adhered hydrogel stabilized through controllable dynamic covalent interactions is reported. These interactions, involving the cross‐linked formation of a hydrogel through reaction of a diacylhydrazine precursor with a tetraformyl partner, increase as a function of time. By using a contact time of 24 h and different compounds with recognized aggregation‐induced emission features (AIEgens), it proves possible to create six laminated acylhydrazone hydrogels displaying different fluorescent colors. Blocks of these hydrogels are then adhered into a structure resembling a Rubik's Cube, a trademark of Rubik's Brand Limited, (RC) and allowed to anneal for 1 h. This produces a 3 × 3 × 3 block (RC) wherein the individual fluorescent gel blocks are loosely adhered to one another. As a consequence, the 1 × 3 × 3 layers making up the RC can be rotated either horizontally or vertically to produce new patterns. Ex situ modification of the RC or application of a chemical stimulus can be used to produce new color arrangements. The present RC structure highlights how the temporal features, strong versus weak adhesion, may be exploited to create smart macroscopic structures.

 
more » « less
Award ID(s):
1807152
NSF-PAR ID:
10459489
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
40
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrogels hold much promise for 3D printing of functional living materials; however, challenges remain in tailoring mechanical robustness as well as biological performance. In addressing this challenge, the modular synthesis of functional hydrogels from 3‐arm diblock copolypeptide stars composed of an inner poly(l‐glutamate) domain and outer poly(l‐tyrosine) or poly(l‐valine) blocks is described. Physical crosslinking due to ß‐sheet assembly of these star block copolymers gives mechanical stability during extrusion printing and the selective incorporation of methacrylate units allows for subsequent photocrosslinking to occur under biocompatible conditions. This permits direct ink writing (DIW) printing of bacteria‐based mixtures leading to 3D objects with high fidelity and excellent bacterial viability. The tunable stiffness of different copolypeptide networks enables control over proliferation and colony formation for embeddedEscherichia colibacteria as demonstrated via isopropyl ß‐d‐1‐thiogalactopyranoside (IPTG) induction of green fluorescent protein (GFP) expression. This translation of molecular structure to network properties highlights the versatility of these polypeptide hydrogel systems with the combination of writable structures and biological activity illustrating the future potential of these 3D‐printed biocomposites.

     
    more » « less
  2. null (Ed.)
    The growth of bacterial biofilms on implanted medical devices causes harmful infections and device failure. Biofilm development initiates when bacteria attach to and sense a surface. For the common nosocomial pathogen Pseudomonas aeruginosa and many others, the transition to the biofilm phenotype is controlled by the intracellular signal and second messenger cyclic-di-GMP (c-di-GMP). It is not known how biomedical materials might be adjusted to impede c-di-GMP signalling, and there are few extant methods for conducting such studies. Here, we develop such a method. We allowed P. aeruginosa to attach to the surfaces of poly(ethylene glycol) diacrylate (PEGDA) hydrogels. These bacteria contained a plasmid for a green fluorescent protein (GFP) reporter for c-di-GMP. We used laser-scanning confocal microscopy to measure the dynamics of the GFP reporter for 3 h, beginning 1 h after introducing bacteria to the hydrogel. We controlled for the effects of changes in bacterial metabolism using a promoterless plasmid for GFP, and for the effects of light passing through different hydrogels being differently attenuated by using fluorescent plastic beads as ‘standard candles’ for calibration. We demonstrate that this method can measure statistically significant differences in c-di-GMP signalling associated with different PEGDA gel types and with the surface-exposed protein PilY1. 
    more » « less
  3. Immunosurveillance of the gastrointestinal epithelium by mononuclear phagocytes (MNPs) is essential for maintaining gut health. However, studying the complex interplay between the human gastrointestinal epithelium and MNPs such as dendritic cells (DCs) is difficult, since traditional cell culture systems lack complexity, and animal models may not adequately represent human tissues. Microphysiological systems, or tissue chips, are an attractive alternative for these investigations, because they model functional features of specific tissues or organs using microscale culture platforms that recreate physiological tissue microenvironments. However, successful integration of multiple of tissue types on a tissue chip platform to reproduce physiological cell-cell interactions remains a challenge. We previously developed a tissue chip system, the gut organoid flow chip (GOFlowChip), for long term culture of 3-D pluripotent stem cell-derived human intestinal organoids. Here, we optimized the GOFlowChip platform to build a complex microphysiological immune-cell-epithelial cell co-culture model in order to study DC-epithelial interactions in human stomach. We first tested different tubing materials and chip configurations to optimize DC loading onto the GOFlowChip and demonstrated that DC culture on the GOFlowChip for up to 20 h did not impact DC activation status or viability. However, Transwell chemotaxis assays and live confocal imaging revealed that Matrigel, the extracellular matrix (ECM) material commonly used for organoid culture, prevented DC migration towards the organoids and the establishment of direct MNP-epithelial contacts. Therefore, we next evaluated DC chemotaxis through alternative ECM materials including Matrigel-collagen mixtures and synthetic hydrogels. A polysaccharide-based synthetic hydrogel, VitroGel®-ORGANOID-3 (V-ORG-3), enabled significantly increased DC chemotaxis through the matrix, supported organoid survival and growth, and did not significantly alter DC activation or viability. On the GOFlowChip, DCs that were flowed into the chip migrated rapidly through the V-ORG matrix and reached organoids embedded deep within the chip, with increased interactions between DCs and gastric organoids. The successful integration of DCs and V-ORG-3 embedded gastric organoids into the GOFlowChip platform now permits real-time imaging of MNP-epithelial interactions and other investigations of the complex interplay between gastrointestinal MNPs and epithelial cells in their response to pathogens, candidate drugs and mucosal vaccines. 
    more » « less
  4. Abstract

    Many cell types require direct cell–cell interactions for differentiation and function; yet, this can be challenging to incorporate into 3‐dimensional (3D) structures for the engineering of tissues. Here, a new approach is introduced that combines aggregates of cells (spheroids) with similarly‐sized hydrogel particles (microgels) to form granular composites that are injectable, undergo interparticle crosslinking via light for initial stabilization, permit cell–cell contacts for cell signaling, and allow spheroid fusion and growth. One area where this is important is in cartilage tissue engineering, as cell–cell contacts are crucial to chondrogenesis and are missing in many tissue engineering approaches. To address this, granular composites are developed from adult porcine mesenchymal stromal cell (MSC) spheroids and hyaluronic acid microgels and simulations and experimental analyses are used to establish the importance of initial MSC spheroid to microgel volume ratios to balance mechanical support with tissue growth. Long‐term chondrogenic cultures of granular composites produce engineered cartilage tissue with extensive matrix deposition and mechanical properties within the range of cartilage, as well as integration with native tissue. Altogether, a new strategy of injectable granular composites is developed that leverages the benefits of cell–cell interactions through spheroids with the mechanical stabilization afforded with engineered hydrogels.

     
    more » « less
  5. The effect of nanoscale defects on nanoparticle dynamics in defective tetra-poly(ethylene glycol) (tetra-PEG) hydrogels is investigated using single particle tracking. In a swollen nearly homogeneous hydrogel, PEG-functionalized quantum dot (QD) probes with a similar hydrodynamic diameter ( d h = 15.1 nm) to the mesh size (〈 ξ s 〉 = 16.3 nm), are primarily immobile. As defects are introduced to the network by reaction-tuning, both the percentage of mobile QDs and the size of displacements increase as the number and size of the defects increase with hydrolysis time, although a large portion of the QDs remain immobile. To probe the effect of nanoparticle size on dynamics in defective networks, the transport of d h = 47.1 nm fluorescent polystyrene (PS) and d h = 9.6 nm PEG-functionalized QDs is investigated. The PS nanoparticles are immobile in all hydrogels, even in highly defective networks with an open structure. Conversely, the smaller QDs are more sensitive to perturbations in the network structure with an increased percentage of mobile particles and larger diffusion coefficients compared to the larger QDs and PS nanoparticles. The differences in nanoparticle mobility as a function of size suggests that particles of different sizes probe different length scales of the defects, indicating that metrics such as the confinement ratio alone cannot predict bulk dynamics in these systems. This study provides insight into designing hydrogels with controlled transport properties, with particular importance for degradable hydrogels for drug delivery applications. 
    more » « less