skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On-demand warehousing: main features and business models
Logistics and distribution need to be more responsive and flexible to satisfy changing and demanding customer requirements due to e-commerce and customization trends. This work focuses in particular on warehousing, with the aim of understanding how emerging business models provide companies with additional ways to acquire warehouse space or fulfillment services. To do so, this work classifies and describes traditional warehouse models. Next, on-demand warehousing is analyzed as an emerging business-to-business (B2B) model that embraces the sharing economy principle of accessing resources rather than owning them. On-demand warehousing companies operate through online platforms connecting companies who have underutilized warehouses or fulfillment capacity to other ones searching for warehousing services. On-demand warehousing enables more flexible resource acquisition, as fixed cost investments are not necessary, and lengthy negotiations are eliminated through a standardized contract between the on-demand platform and the renter. This work contributes to the literature through an improved understanding and description of the main features of on-demand warehousing, representing a starting point for further research on this topic. Future developments are needed on the analysis of the main decisions a lender of space has to make when choosing an on-demand model.  more » « less
Award ID(s):
1751801
PAR ID:
10171090
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
XXV Summer School "Francsco Turco" - Industrial Systems Engineering
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. On-demand warehousing platforms match companies with underutilized warehouse and distribution capabilities with customers who need extra space or distribution services. These new business models have unique advantages, in terms of reduced capacity and commitment granularity, but also have different cost structures compared with traditional ways of obtaining distribution capabilities. This research is the first quantitative analysis to consider distribution network strategies given the advent of on-demand warehousing. Our multi-period facility location model – a mixed-integer linear program – simultaneously determines location-allocation decisions of three distribution center types (self-distribution, 3PL/lease, on-demand). A simulation model operationally evaluates the impact of the planned distribution strategy when various uncertainties can occur. Computational experiments for a company receiving products produced internationally to fulfil a set of regional customer demands illustrate that the power of on-demand warehousing is in creating hybrid network designs that more efficiently use self-distribution facilities through improved capacity utilization. However, the business case for on-demand warehousing is shown to be influenced by several factors, namely on-demand capacity availability, responsiveness requirements, and demand patterns. This work supports a firm’s use of on-demand warehousing if it has tight response requirements, for example for same-day delivery; however, if a firm has relaxed response requirements, then on-demand warehousing is only recommended if capacity availability of planned on-demand services is high. We also analyze capacity flexibility options leased by third-party logistics companies for a premium price and draw attention to the importance of them offering more granular solutions to stay competitive in the market. 
    more » « less
  2. To close the gap between current distribution operations and today’s customer expectations, firms need to think differently about how resources are acquired, managed and allocated to fulfill customer requests. Rather than optimize planned resource capacity acquired through ownership or long- term partnerships, this work focuses on a specific supply-side innovation – on-demand distribution platforms. On-demand distribution systems move, store, and fulfill goods by matching autonomous suppliers' resources (warehouse space, fulfillment capacity, truck space, delivery services) to requests on-demand. On-demand warehousing systems can provide resource elasticity by allowing capacity decisions to be made at a finer granularity (at the pallet-level) and commitment (monthly versus yearly), than construct or lease options. However, such systems are inherently more complex than traditional systems, as well as have varying costs and operational structures (e.g., higher variable costs, but little or no fixed costs). New decision- supporting models are needed to capture these trade-offs. 
    more » « less
  3. A recent business model, on-demand warehousing, enables warehouse owners with extra distribution capacity to rent it out for short periods, providing firms needing flexible network designs a new type of distribution capacity. In this paper, a heuristic is created to solve large scale instances of dynamic facility location models that optimize distribution networks over a multi-period planning horizon, simultaneously considering the selection of different warehouse types with varying capacity granularity, commitment granularity, access to scale, and cost structures. The heuristic iteratively solves selected single-period problems, creating a set of smaller subproblems that are then solved for multiple periods. Their decisions are combined to achieve feasible low-cost solutions, ensuring each customer’s demand point is covered for each period. A set of computational experiments recommends how heuristic settings should be set by industrial decision makers and illustrates the heuristic can generate high-quality solutions for large scale networks during long planning horizons and many decision periods. The heuristic can solve national-level instances with many customer demand points, candidate locations, different warehouse types and capacity levels and many periods. 
    more » « less
  4. In this paper, we introduce the Warehouse Augmented Reality Program (WARP), its functionality, practicality, and potential use cases in education. We build this application on the backbone of WebXR. Using this application programming interface (API), we create an interactive web tool that displays a life-sized warehouse in augmented reality (AR) in front of users that can be viewed on a smartphone or a tablet. AR is a technology that displays virtual objects in the real world on a digital device’s screen, allowing users to interact with virtual objects and locations while moving about a real-world environment. This tool can enhance warehousing education by making it immersive and more interactive. In addition, the tool can make warehousing operations more efficient and warehouse design less costly. We highlight how our tool can be applicable and beneficial to education and industry. We demonstrate how this tool can be integrated into a problem-based learning (PBL) assignment about warehouse layout design and order picking. The PBL activity involves comparing two different warehouse layouts (fishbone and traditional) by completing a set of order picking tasks in AR warehouse environments. The task is to perform single item picking over thirty orders and comparing the average order picking time per layout. Then, we use the results of these human subject experiments for validating the realism of the warehouse layouts generated by the tool by comparing the empirical completion times with the analytical results from the literature. We also administer a system usability scale (SUS) survey and collect feedback from industry experts. 
    more » « less
  5. null (Ed.)
    With the rising need for efficient and flexible short-distance urban transportation, more vehicle sharing companies are offering one-way car-sharing services. Electrified vehicle sharing systems are even more effective in terms of reducing fuel consumption and carbon emission. In this article, we investigate a dynamic fleet management problem for an Electric Vehicle (EV) sharing system that faces time-varying random demand and electricity price. Demand is elastic in each time period, reacting to the announced price. To maximize the revenue, the EV fleet optimizes trip pricing and EV dispatching decisions dynamically. We develop a new value function approximation with input convex neural networks to generate high-quality solutions. Through a New York City case study, we compare it with standard dynamic programming methods and develop insights regarding the interaction between the EV fleet and the power grid. 
    more » « less