- Publication Date:
- NSF-PAR ID:
- 10171256
- Journal Name:
- Wiki Workshop
- Sponsoring Org:
- National Science Foundation
More Like this
-
Preventing abuse of web services by bots is an increasingly important problem, as abusive activities grow in both volume and variety. CAPTCHAs are the most common way for thwarting bot activities. However, they are often ineffective against bots and frustrating for humans. In addition, some recent CAPTCHA techniques diminish user privacy. Meanwhile, client-side Trusted Execution Environments (TEEs) are becoming increasingly widespread (notably, ARM TrustZone and Intel SGX), allowing establishment of trust in a small part (trust anchor or TCB) of client-side hardware. This prompts the question: can a TEE help reduce (or remove entirely) user burden of solving CAPTCHAs? In this paper, we design CACTI: CAPTCHA Avoidance via Client-side TEE Integration. Using client-side TEEs, CACTI allows legitimate clients to generate unforgeable rate-proofs demonstrating how frequently they have performed specific actions. These rate-proofs can be sent to web servers in lieu of solving CAPTCHAs. CACTI provides strong client privacy guarantees, since the information is only sent to the visited website and authenticated using a group signature scheme. Our evaluations show that overall latency of generating and verifying a CACTI rate-proof is less than 0.25 sec, while CACTI's bandwidth overhead is over 98% lower than that of current CAPTCHA systems.
-
Preventing abuse of web services by bots is an increasingly important problem, as abusive activities grow in both volume and variety. CAPTCHAs are the most common way for thwarting bot activities. However, they are often ineffective against bots and frustrating for humans. In addition, some recent CAPTCHA techniques diminish user privacy. Meanwhile, client-side Trusted Execution Environments (TEEs) are becoming increasingly widespread (notably, ARM TrustZone and Intel SGX), allowing establishment of trust in a small part (trust anchor or TCB) of client-side hardware. This prompts the question: can a TEE help reduce (or remove entirely) user burden of solving CAPTCHAs? In this paper, we design CACTI: CAPTCHA Avoidance via Client-side TEE Integration. Using client-side TEEs, CACTI allows legitimate clients to generate unforgeable rate-proofs demonstrating how frequently they have performed specific actions. These rate-proofs can be sent to web servers in lieu of solving CAPTCHAs. CACTI provides strong client privacy guarantees, since the information is only sent to the visited website and authenticated using a group signature scheme. Our evaluations show that overall latency of generating and verifying a CACTI rate-proof is less than 0.25 sec, while CACTI's bandwidth overhead is over 98% lower than that of current CAPTCHA systems.
-
Software bots are used by Open Source Software (OSS) projects to streamline the code review process. Interfacing between developers and automated services, code review bots report continuous integration failures, code quality checks, and code coverage. However, the impact of such bots on maintenance tasks is still neglected. In this paper, we study how project maintainers experience code review bots. We surveyed 127 maintainers and asked about their expectations and perception of changes incurred by code review bots. Our findings reveal that the most frequent expectations include enhancing the feedback bots provide to developers, reducing the maintenance burden for developers, and enforcing code coverage. While maintainers report that bots satisfied their expectations, they also perceived unexpected effects, such as communication noise and newcomers' dropout. Based on these results, we provide a series of implications for bot developers, as well as insights for future research.
-
Abstract Software bots have been facilitating several development activities in Open Source Software (OSS) projects, including code review. However, these bots may bring unexpected impacts to group dynamics, as frequently occurs with new technology adoption. Understanding and anticipating such effects is important for planning and management. To analyze these effects, we investigate how several activity indicators change after the adoption of a code review bot. We employed a regression discontinuity design on 1,194 software projects from GitHub. We also interviewed 12 practitioners, including open-source maintainers and contributors. Our results indicate that the adoption of code review bots increases the number of monthly merged pull requests, decreases monthly non-merged pull requests, and decreases communication among developers. From the developers’ perspective, these effects are explained by the transparency and confidence the bot comments introduce, in addition to the changes in the discussion focused on pull requests. Practitioners and maintainers may leverage our results to understand, or even predict, bot effects on their projects.
-
Software bots automate tasks within Open Source Software (OSS) projects' pull requests and save reviewing time and effort ("the good"). However, their interactions can be disruptive and noisy and lead to information overload ("the bad"). To identify strategies to overcome such problems, we applied Design Fiction as a participatory method with 32 practitioners. We elicited 22 design strategies for a bot mediator or the pull request user interface ("the promising"). Participants envisioned a separate place in the pull request interface for bot interactions and a bot mediator that can summarize and customize other bots' actions to mitigate noise. We also collected participants' perceptions about a prototype implementing the envisioned strategies. Our design strategies can guide the development of future bots and social coding platforms.