skip to main content

Title: The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow
ABSTRACT We present and analyse a new tidal disruption event (TDE), AT2017eqx at redshift z = 0.1089, discovered by Pan-STARRS and ATLAS. The position of the transient is consistent with the nucleus of its host galaxy; the spectrum shows a persistent blackbody temperature T ≳ 20 000 K with broad H i and He ii emission; and it peaks at a blackbody luminosity of L ≈ 1044 erg s−1. The lines are initially centred at zero velocity, but by 100 d, the H i lines disappear while the He ii develops a blueshift of ≳ 5000 km s−1. Both the early- and late-time morphologies have been seen in other TDEs, but the complete transition between them is unprecedented. The evolution can be explained by combining an extended atmosphere, undergoing slow contraction, with a wind in the polar direction becoming visible at late times. Our observations confirm that a lack of hydrogen a TDE spectrum does not indicate a stripped star, while the proposed model implies that much of the diversity in TDEs may be due to the observer viewing angle. Modelling the light curve suggests AT2017eqx resulted from the complete disruption of a solar-mass star by a black hole of ∼106.3 M⊙. The host is another Balmer-strong absorption galaxy, though fainter and less more » centrally concentrated than most TDE hosts. Radio limits rule out a relativistic jet, while X-ray limits at 500 d are among the deepest for a TDE at this phase. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Award ID(s):
1518052 1909796
Publication Date:
NSF-PAR ID:
10171258
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
488
Issue:
2
Page Range or eLocation-ID:
1878 to 1893
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass ≈106 M⊙, disrupting a star of ≈1 M⊙. By analysing our comprehensive UV, optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L ∝ t2, consistent with a photosphere expanding at constant velocity (≳2000 km s−1), and a line-forming region producing initially blueshifted H and He ii profiles with v = 3000–10 000 km s−1. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission – the first time this connection has been observed in a TDE. The light-curve rise begins 29 ± 2 d before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling atmore »constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N iii) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at ≈1041 erg s−1. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models.« less
  2. ABSTRACT AT 2018hyz (= ASASSN-18zj) is a tidal disruption event (TDE) located in the nucleus of a quiescent E+A galaxy at a redshift of z = 0.04573, first detected by the All-Sky Automated Survey for Supernovae (ASAS-SN). We present optical+UV photometry of the transient, as well as an X-ray spectrum and radio upper limits. The bolometric light curve of AT 2018hyz is comparable to other known TDEs and declines at a rate consistent with a t−5/3 at early times, emitting a total radiated energy of E = 9 × 1050 erg. An excess bump appears in the UV light curve about 50 d after bolometric peak, followed by a flattening beyond 250 d. We detect a constant X-ray source present for at least 86 d. The X-ray spectrum shows a total unabsorbed flux of ∼4 × 10−14 erg cm−2 s−1 and is best fit by a blackbody plus power-law model with a photon index of Γ = 0.8. A thermal X-ray model is unable to account for photons >1 keV, while a radio non-detection favours inverse-Compton scattering rather than a jet for the non-thermal component. We model the optical and UV light curves using the Modular Open-Source Fitter for Transients (MOSFiT) and find a best fit for a black hole of 5.2 × 106 M⊙ disrupting a 0.1 M⊙ star; themore »model suggests the star was likely only partially disrupted, based on the derived impact parameter of β = 0.6. The low optical depth implied by the small debris mass may explain how we are able to see hydrogen emission with disc-like line profiles in the spectra of AT 2018hyz (see our companion paper).« less
  3. ABSTRACT We present observations of ASASSN-19dj, a nearby tidal disruption event (TDE) discovered in the post-starburst galaxy KUG 0810+227 by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of d ≃ 98 Mpc. We observed ASASSN-19dj from −21 to 392 d relative to peak ultraviolet (UV)/optical emission using high-cadence, multiwavelength spectroscopy and photometry. From the ASAS-SN g-band data, we determine that the TDE began to brighten on 2019 February 6.8 and for the first 16 d the rise was consistent with a flux ∝t2 power law. ASASSN-19dj peaked in the UV/optical on 2019 March 6.5 (MJD = 58548.5) at a bolometric luminosity of L = (6.2 ± 0.2) × 1044 erg s−1. Initially remaining roughly constant in X-rays and slowly fading in the UV/optical, the X-ray flux increased by over an order of magnitude ∼225 d after peak, resulting from the expansion of the X-ray emitting region. The late-time X-ray emission is well fitted by a blackbody with an effective radius of ∼1 × 1012 cm and a temperature of ∼6 × 105 K. The X-ray hardness ratio becomes softer after brightening and then returns to a harder state as the X-rays fade. Analysis of Catalina Real-Time Transient Survey images reveals a nuclear outburst roughly 14.5 yr earlier with a smooth declinemore »and a luminosity of LV ≥ 1.4 × 1043 erg s−1, although the nature of the flare is unknown. ASASSN-19dj occurred in the most extreme post-starburst galaxy yet to host a TDE, with Lick HδA = 7.67 ± 0.17 Å.« less
  4. ABSTRACT We present results from spectroscopic observations of AT 2018hyz, a transient discovered by the All-Sky Automated Survey for Supernova survey at an absolute magnitude of MV ∼ −20.2 mag, in the nucleus of a quiescent galaxy with strong Balmer absorption lines. AT 2018hyz shows a blue spectral continuum and broad emission lines, consistent with previous TDE candidates. High cadence follow-up spectra show broad Balmer lines and He i in early spectra, with He ii making an appearance after ∼70–100 d. The Balmer lines evolve from a smooth broad profile, through a boxy, asymmetric double-peaked phase consistent with accretion disc emission, and back to smooth at late times. The Balmer lines are unlike typical active galactic nucleus in that they show a flat Balmer decrement (Hα/Hβ ∼ 1.5), suggesting the lines are collisionally excited rather than being produced via photoionization. The flat Balmer decrement together with the complex profiles suggests that the emission lines originate in a disc chromosphere, analogous to those seen in cataclysmic variables. The low optical depth of material due to a possible partial disruption may be what allows us to observe these double-peaked, collisionally excited lines. The late appearance of He ii may be due to an expanding photosphere or outflow, ormore »late-time shocks in debris collisions.« less
  5. ABSTRACT We present the discovery of ASASSN-18jd (AT 2018bcb), a luminous optical/ultraviolet(UV)/X-ray transient located in the nucleus of the galaxy 2MASX J22434289–1659083 at z = 0.1192. Over the year after discovery, Swift UltraViolet and Optical Telescope (UVOT) photometry shows the UV spectral energy distribution of the transient to be well modelled by a slowly shrinking blackbody with temperature $T \sim 2.5 \times 10^{4} \, {\rm K}$, a maximum observed luminosity of $L_{\rm max} = 4.5^{+0.6}_{-0.3}\times 10^{44} \, {\rm erg \,s}^{-1}$, and a radiated energy of $E = 9.6^{+1.1}_{-0.6} \times 10^{51} \, {\rm erg}$. X-ray data from Swift X-Ray Telescope (XRT) and XMM–Newton show a transient, variable X-ray flux with blackbody and power-law components that fade by nearly an order of magnitude over the following year. Optical spectra show strong, roughly constant broad Balmer emission and transient features attributable to He ii, N iii–v, O iii, and coronal Fe. While ASASSN-18jd shares similarities with tidal disruption events (TDEs), it is also similar to the newly discovered nuclear transients seen in quiescent galaxies and faint active galactic nuclei (AGNs).