skip to main content


Title: Pore surface engineering of covalent organic frameworks: structural diversity and applications
Connecting molecular building blocks by covalent bonds to form extended crystalline structures has caused a sharp upsurge in the field of porous materials, especially covalent organic frameworks (COFs), thereby translating the accuracy, precision, and versatility of covalent chemistry from discrete molecules to two-dimensional and three-dimensional crystalline structures. COFs are crystalline porous frameworks prepared by a bottom-up approach from predesigned symmetric units with well-defined structural properties such as a high surface area, distinct pores, cavities, channels, thermal and chemical stability, structural flexibility and functional design. Due to the tedious and sometimes impossible introduction of certain functionalities into COFs via de novo synthesis, pore surface engineering through judicious functionalization with a range of substituents under ambient or harsh conditions using the principle of coordination chemistry, chemical conversion, and building block exchange is of profound importance. In this review, we aim to summarize dynamic covalent chemistry and framework linkage in the context of design features, different methods and perspectives of pore surface engineering along with their versatile roles in a plethora of applications such as biomedical, gas storage and separation, catalysis, sensing, energy storage and environmental remediation.  more » « less
Award ID(s):
1706025
NSF-PAR ID:
10171306
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
45
ISSN:
2040-3364
Page Range / eLocation ID:
21679 to 21708
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Catalysis is ubiquitous in ∼90% of chemical manufacturing processes and contributes up to 35% of global GDP. Hence, the development of advanced catalytic systems is of utmost importance for academia, industry, and government. Covalent organic frameworks (COFs) are a rapidly emerging class of crystalline porous materials that precisely integrate organic monomer units into extended periodic networks, offering a propitious platform for heterogeneous catalysis due to salient structural merits of ultralow density, high crystallinity, permanent porosity, structural tunability, functional diversity, and synthetic versatility. The past decade has witnessed an upsurge of interest in COFs for heterogeneous catalysis and this trend is expected to continue. In this review, we briefly introduce COF chemistry concerning the design principles, growth mechanism, and cutting-edge advances in structural evolution, linkage chemistry, and facile synthesis. We then scrutinize four leading design strategies for COF catalysts, namely pristine COFs with catalytically active backbones, COFs as hosts for the inclusion of catalytic species, COF-based heterostructures, and COF-derived carbons for thermo-, photo-, and electrocatalysis. Next, we overview the most recent advances (mainly from 2020 to 2023) of COFs in heterogeneous catalysis, along with their fundamentals and advantages. Finally, we outline the current challenges and offer our perspectives on the future directions of COFs for heterogeneous catalysis. 
    more » « less
  2. Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers with highly tuneable structures and functionalities. COFs have been proposed as ideal materials for applications in the energy-intensive field of molecular separation due to their notable intrinsic features such as low density, exceptional stability, high surface area, and readily adjustable pore size and chemical environment. This review attempts to highlight the key advancements made in the synthesis of COFs for diverse separation applications such as water treatment or the separation of gas mixtures and organic molecules, including chiral and isomeric compounds. Methods proposed for the fabrication of COF-based columns and continuous membranes for practical applications are also discussed in detail. Finally, a perspective regarding the remaining challenges and future directions for COF research in the field of separation has also been presented. 
    more » « less
  3. Abstract

    Covalent organic frameworks (COFs) are an emerging class of organic crystalline polymers with well‐defined molecular geometry and tunable porosity. COFs are formed via reversible condensation of lightweight molecular building blocks, which dictate its geometry in two or three dimensions. Among COFs, 2D COFs have garnered special attention due to their unique structure composed of two‐dimensionally extended organic sheets stacked in layers generating periodic columnar π‐arrays, functional pore space, and their ease of synthesis. These unique features in combination with their low density, high crystallinity, large surface area, and biodegradability have made them an excellent candidate for a plethora of applications ranging from energy to biomedical sciences. In this article, the evolution of 2D COFs is briefly discussed in terms of different types of chemical linkages, synthetic strategies of bulk and nanoscale 2D COFs, and their tunability from a biomedical perspective. Next, the biomedical applications of 2D COFs specifically for drug delivery, phototherapy, biosensing, bioimaging, biocatalysis, and antibacterial activity are summarized. In addition, current challenges and emerging approaches in designing 2D COFs for advanced biomedical applications are discussed.

     
    more » « less
  4. Abstract

    Achieving high‐performance biocomposites requires knowledge of the compatability between the immobilized enzyme and its host material. The modular nature of covalent organic frameworks (COFs), as a host, allows their pore geometries and chemical functionalities to be fine‐tuned independently, permitting comparative studies between the individual parameters and the performances of the resultant biocomposites. This research demonstrates that dual pores in COFs have profound consequences on the catalytic activity and denaturation of infiltrated enzymes. This approach enforces a constant pore environment by rational building‐block design, which enables it to be unequivocally determined that pore heterogeneity is responsible for rate enhancements of up to threefold per enzyme molecule. More so, the enzyme is more tolerant to detrimental by‐products when occupying the larger pore in a dual‐pore COF compared to a corresponding uniform porous COF. Kinetic studies highlight that pore heterogeneity facilitates mass transfer of both reagents and products. This unparalleled versatility of these materials allows many different aspects to be designed on demand, lending credence to their prospect as next‐generation host materials for various enzyme biocomposites catalysts.

     
    more » « less
  5. Abstract

    Covalent organic frameworks (COFs) are highly modular porous crystalline polymers that are of interest for applications such as charge‐storage devices, nanofiltration membranes, and optoelectronic devices. COFs are typically synthesized as microcrystalline powders, which limits their performance in these applications, and their limited solubility precludes large‐scale processing into more useful morphologies and devices. We report a general, scalable method to exfoliate two‐dimensional imine‐linked COF powders by temporarily protonating their linkages. The resulting suspensions were cast into continuous crystalline COF films up to 10 cm in diameter, with thicknesses ranging from 50 nm to 20 μm depending on the suspension composition, concentration, and casting protocol. Furthermore, we demonstrate that the film fabrication process proceeds through a partial depolymerization/repolymerization mechanism, providing mechanically robust films that can be easily separated from their substrates.

     
    more » « less