skip to main content


Title: Predicting human design decisions with deep recurrent neural network combining static and dynamic data
Computational modeling of the human sequential design process and successful prediction of future design decisions are fundamental to design knowledge extraction, transfer, and the development of artificial design agents. However, it is often difficult to obtain designer-related attributes (static data) in design practices, and the research based on combining static and dynamic data (design action sequences) in engineering design is still underexplored. This paper presents an approach that combines both static and dynamic data for human design decision prediction using two different methods. The first method directly combines the sequential design actions with static data in a recurrent neural network (RNN) model, while the second method integrates a feed-forward neural network that handles static data separately, yet in parallel with RNN. This study contributes to the field from three aspects: (a) we developed a method of utilizing designers’ cluster information as a surrogate static feature to combine with a design action sequence in order to tackle the challenge of obtaining designer-related attributes; (b) we devised a method that integrates the function–behavior–structure design process model with the one-hot vectorization in RNN to transform design action data to design process stages where the insights into design thinking can be drawn; (c) to the best of our knowledge, it is the first time that two methods of combining static and dynamic data in RNN are compared, which provides new knowledge about the utility of different combination methods in studying sequential design decisions. The approach is demonstrated in two case studies on solar energy system design. The results indicate that with appropriate kernel models, the RNN with both static and dynamic data outperforms traditional models that only rely on design action sequences, thereby better supporting design research where static features, such as human characteristics, often play an important role.  more » « less
Award ID(s):
1503196 1842588
NSF-PAR ID:
10171401
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Design Science
Volume:
6
ISSN:
2053-4701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work proposes an Adaptive Fuzzy Prediction (AFP) method for the attenuation time series in Commercial Microwave links (CMLs). Time-series forecasting models regularly rely on the assumption that the entire data set follows the same Data Generating Process (DGP). However, the signals in wireless microwave links are severely affected by the varying weather conditions in the channel. Consequently, the attenuation time series might change its characteristics significantly at different periods. We suggest an adaptive framework to better employ the training data by grouping sequences with related temporal patterns to consider the non-stationary nature of the signals. The focus in this work is two-folded. The first is to explore the integration of static data of the CMLs as exogenous variables for the attenuation time series models to adopt diverse link characteristics. This extension allows to include various attenuation datasets obtained from additional CMLs in the training process and dramatically increasing available training data. The second is to develop an adaptive framework for short-term attenuation forecasting by employing an unsupervised fuzzy clustering procedure and supervised learning models. We empirically analyzed our framework for model and data-driven approaches with Recurrent Neural Network (RNN) and Autoregressive Integrated Moving Average (ARIMA) variations. We evaluate the proposed extensions on real-world measurements collected from 4G backhaul networks, considering dataset availability and the accuracy for 60 seconds prediction. We show that our framework can significantly improve conventional models’ accuracy and that incorporating data from various CMLs is essential to the AFP framework. The proposed methods have been shown to enhance the forecasting model’s performance by 30 − 40%, depending on the specific model and the data availability. 
    more » « less
  2. This work proposes an Adaptive Fuzzy Prediction (AFP) method for the attenuation time series in Commercial Microwave links (CMLs). Time-series forecasting models regularly rely on the assumption that the entire data set follows the same Data Generating Process (DGP). However, the signals in wireless microwave links are severely affected by the varying weather conditions in the channel. Consequently, the attenuation time series might change its characteristics significantly at different periods. We suggest an adaptive framework to better employ the training data by grouping sequences with related temporal patterns to consider the non-stationary nature of the signals. The focus in this work is two-folded. The first is to explore the integration of static data of the CMLs as exogenous variables for the attenuation time series models to adopt diverse link characteristics. This extension allows to include various attenuation datasets obtained from additional CMLs in the training process and dramatically increasing available training data. The second is to develop an adaptive framework for short-term attenuation forecasting by employing an unsupervised fuzzy clustering procedure and supervised learning models. We empirically analyzed our framework for model and data-driven approaches with Recurrent Neural Network (RNN) and Autoregressive Integrated Moving Average (ARIMA) variations. We evaluate the proposed extensions on real-world measurements collected from 4G backhaul networks, considering dataset availability and the accuracy for 60 seconds prediction. We show that our framework can significantly improve conventional models’ accuracy and that incorporating data from various CMLs is essential to the AFP framework. The proposed methods have been shown to enhance the forecasting model’s performance by 30 − 40%, depending on the specific model and the data availability. 
    more » « less
  3. null (Ed.)
    This article presents the design process of a supernumerary wearable robotic forearm (WRF), along with methods for stabilizing the robot’s end-effector using human motion prediction. The device acts as a lightweight “third arm” for the user, extending their reach during handovers and manipulation in close-range collaborative activities. It was developed iteratively, following a user-centered design process that included an online survey, contextual inquiry, and an in-person usability study. Simulations show that the WRF significantly enhances a wearer’s reachable workspace volume, while remaining within biomechanical ergonomic load limits during typical usage scenarios. While operating the device in such scenarios, the user introduces disturbances in its pose due to their body movements. We present two methods to overcome these disturbances: autoregressive (AR) time series and a recurrent neural network (RNN). These models were used for forecasting the wearer’s body movements to compensate for disturbances, with prediction horizons determined through linear system identification. The models were trained offline on a subset of the KIT Human Motion Database, and tested in five usage scenarios to keep the 3D pose of the WRF’s end-effector static. The addition of the predictive models reduced the end-effector position errors by up to 26% compared to direct feedback control. 
    more » « less
  4. Background

    Although conventional prediction models for surgical patients often ignore intraoperative time-series data, deep learning approaches are well-suited to incorporate time-varying and non-linear data with complex interactions. Blood lactate concentration is one important clinical marker that can reflect the adequacy of systemic perfusion during cardiac surgery. During cardiac surgery and cardiopulmonary bypass, minute-level data is available on key parameters that affect perfusion. The goal of this study was to use machine learning and deep learning approaches to predict maximum blood lactate concentrations after cardiac surgery. We hypothesized that models using minute-level intraoperative data as inputs would have the best predictive performance.

    Methods

    Adults who underwent cardiac surgery with cardiopulmonary bypass were eligible. The primary outcome was maximum lactate concentration within 24 h postoperatively. We considered three classes of predictive models, using the performance metric of mean absolute error across testing folds: (1) static models using baseline preoperative variables, (2) augmentation of the static models with intraoperative statistics, and (3) a dynamic approach that integrates preoperative variables with intraoperative time series data.

    Results

    2,187 patients were included. For three models that only used baseline characteristics (linear regression, random forest, artificial neural network) to predict maximum postoperative lactate concentration, the prediction error ranged from a median of 2.52 mmol/L (IQR 2.46, 2.56) to 2.58 mmol/L (IQR 2.54, 2.60). The inclusion of intraoperative summary statistics (including intraoperative lactate concentration) improved model performance, with the prediction error ranging from a median of 2.09 mmol/L (IQR 2.04, 2.14) to 2.12 mmol/L (IQR 2.06, 2.16). For two modelling approaches (recurrent neural network, transformer) that can utilize intraoperative time-series data, the lowest prediction error was obtained with a range of median 1.96 mmol/L (IQR 1.87, 2.05) to 1.97 mmol/L (IQR 1.92, 2.05). Intraoperative lactate concentration was the most important predictive feature based on Shapley additive values. Anemia and weight were also important predictors, but there was heterogeneity in the importance of other features.

    Conclusion

    Postoperative lactate concentrations can be predicted using baseline and intraoperative data with moderate accuracy. These results reflect the value of intraoperative data in the prediction of clinically relevant outcomes to guide perioperative management.

     
    more » « less
  5. Abstract

    Detection of deception attacks is pivotal to ensure the safe and reliable operation of cyber-physical systems (CPS). Detection of such attacks needs to consider time-series sequences and is very challenging especially for autonomous vehicles that rely on high-dimensional observations from camera sensors. The paper presents an approach to detect deception attacks in real-time utilizing sensor observations, with a special focus on high-dimensional observations. The approach is based on inductive conformal anomaly detection (ICAD) and utilizes a novel generative model which consists of a variational autoencoder (VAE) and a recurrent neural network (RNN) that is used to learn both spatial and temporal features of the normal dynamic behavior of the system. The model can be used to predict the observations for multiple time steps, and the predictions are then compared with actual observations to efficiently quantify the nonconformity of a sequence under attack relative to the expected normal behavior, thereby enabling real-time detection of attacks using high-dimensional sequential data. We evaluate the approach empirically using two simulation case studies of an advanced emergency braking system and an autonomous car racing example, as well as a real-world secure water treatment dataset. The experiments show that the proposed method outperforms other detection methods, and in most experiments, both false positive and false negative rates are less than 10%. Furthermore, execution times measured on both powerful cloud machines and embedded devices are relatively short, thereby enabling real-time detection.

     
    more » « less