skip to main content


Title: Predicting human design decisions with deep recurrent neural network combining static and dynamic data
Computational modeling of the human sequential design process and successful prediction of future design decisions are fundamental to design knowledge extraction, transfer, and the development of artificial design agents. However, it is often difficult to obtain designer-related attributes (static data) in design practices, and the research based on combining static and dynamic data (design action sequences) in engineering design is still underexplored. This paper presents an approach that combines both static and dynamic data for human design decision prediction using two different methods. The first method directly combines the sequential design actions with static data in a recurrent neural network (RNN) model, while the second method integrates a feed-forward neural network that handles static data separately, yet in parallel with RNN. This study contributes to the field from three aspects: (a) we developed a method of utilizing designers’ cluster information as a surrogate static feature to combine with a design action sequence in order to tackle the challenge of obtaining designer-related attributes; (b) we devised a method that integrates the function–behavior–structure design process model with the one-hot vectorization in RNN to transform design action data to design process stages where the insights into design thinking can be drawn; (c) to the best of our knowledge, it is the first time that two methods of combining static and dynamic data in RNN are compared, which provides new knowledge about the utility of different combination methods in studying sequential design decisions. The approach is demonstrated in two case studies on solar energy system design. The results indicate that with appropriate kernel models, the RNN with both static and dynamic data outperforms traditional models that only rely on design action sequences, thereby better supporting design research where static features, such as human characteristics, often play an important role.  more » « less
Award ID(s):
1503196 1842588
PAR ID:
10171401
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Design Science
Volume:
6
ISSN:
2053-4701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper presents a deep learning enhanced adaptive unscented Kalman filter (UKF) for predicting human arm motion in the context of manufacturing. Unlike previous network-based methods that solely rely on captured human motion data, which is represented as bone vectors in this paper, we incorporate a human arm dynamic model into the motion prediction algorithm and use the UKF to iteratively forecast human arm motions. Specifically, a Lagrangian-mechanics-based physical model is employed to correlate arm motions with associated muscle forces. Then a Recurrent Neural Network (RNN) is integrated into the framework to predict future muscle forces, which are transferred back to future arm motions based on the dynamic model. Given the absence of measurement data for future human motions that can be input into the UKF to update the state, we integrate another RNN to directly predict human future motions and treat the prediction as surrogate measurement data fed into the UKF. A noteworthy aspect of this study involves the quantification of uncertainties associated with both the data-driven and physical models in one unified framework. These quantified uncertainties are used to dynamically adapt the measurement and process noises of the UKF over time. This adaption, driven by the uncertainties of the RNN models, addresses inaccuracies stemming from the data-driven model and mitigates discrepancies between the assumed and true physical models, ultimately enhancing the accuracy and robustness of our predictions. One unique point of our method is that it integrates a dynamic model of human arms and two RNN models, and uses Monte Carlo dropout sampling to quantify the uncertainties inherent in our RNN prediction models and transforms them into the covariances of the UKF’s measurement and process noises respectively. Compared to the traditional RNN-based prediction, our method demonstrates improved accuracy and robustness in extensive experimental validations of various types of human motions.

     
    more » « less
  2. Abstract

    During a design process, designers iteratively go back and forth between different design stages to explore the design space and search for the best design solution that satisfies all design constraints. For complex design problems, human has shown surprising capability in effectively reducing the dimensionality of design space and quickly converging it to a reasonable range for algorithms to step in and continue the search process. Therefore, modeling how human designers make decisions in such a sequential design process can help discover beneficial design patterns, strategies, and heuristics, which are important to the development of new algorithms embedded with human intelligence to augment computational design. In this paper, we develop a deep learning based approach to model and predict designers’ sequential decisions in a system design context. The core of this approach is an integration of the function-behavior-structure model for design process characterization and the long short term memory unit model for deep leaning. This approach is demonstrated in a solar energy system design case study, and its prediction accuracy is evaluated benchmarked on several commonly used models for sequential design decisions, such as Markov Chain model, Hidden Markov Chain model, and random sequence generation model. The results indicate that the proposed approach outperforms the other traditional models. This implies that during a system design task, designers are very likely to reply on both short-term and long-term memory of past design decisions in guiding their decision making in future design process. Our approach is general to be applied in many other design contexts as long as the sequential design action data is available.

     
    more » « less
  3. Moghaddam, Mohsen ; Marion, Tucker ; Holtta-Otto, Katja ; Fu, Kate ; Olechowski, Alison ; McComb, Christopher (Ed.)
    The early-stage product design and development (PDD) process fundamentally involves the processing, synthesis, and communication of a large amount of information to make a series of key decisions on design exploration and specification, concept generation and evaluation, and prototyping. Although most current PDD practices depend heavily on human intuition, advances in computing, communication, and human–computer interaction technologies can transform PDD processes by combining the creativity and ingenuity of human designers with the speed and precision of computers. Emerging technologies like artificial intelligence (AI), cloud computing, and extended reality (XR) stand to substantially change the way designers process information and make decisions in the early stages of PDD by enabling new methods such as natural language processing, generative modeling, cloud-based virtual collaboration, and immersive design and prototyping. These new technologies are unlikely to render the human designer obsolete, but rather do change the role that the human designer plays. Thus, it is essential to understand the designer's role as an individual, a team, and a group that forms an organization. The purpose of this special issue is to synthesize the state-of-the-art research on technologies and methods that augment the performance of designers in the front-end of PDD—from understanding user needs to conceptual design, prototyping, and development of systems architecture while also emphasizing the critical need to understand the designer and their role as well. 
    more » « less
  4. Time series prediction is an important problem in machine learning. Previous methods for time series prediction did not involve additional information. With a lot of dynamic knowledge graphs available, we can use this additional information to predict the time series better. Recently, there has been a focus on the application of deep representation learning on dynamic graphs. These methods predict the structure of the graph by reasoning over the interactions in the graph at previous time steps. In this paper, we propose a new framework to incorporate the information from dynamic knowledge graphs for time series prediction. We show that if the information contained in the graph and the time series data are closely related, then this inter-dependence can be used to predict the time series with improved accuracy. Our framework, DArtNet, learns a static embedding for every node in the graph as well as a dynamic embedding which is dependent on the dynamic attribute value (time-series). Then it captures the information from the neighborhood by taking a relation specific mean and encodes the history information using RNN. We jointly train the model link prediction and attribute prediction. We evaluate our method on five specially curated datasets for this problem and show a consistent improvement in time series prediction results. We release the data and code of model DArtNet for future research. 
    more » « less
  5. null (Ed.)
    Abstract In engineering systems design, designers iteratively go back and forth between different design stages to explore the design space and search for the best design solution that satisfies all design constraints. For complex design problems, human has shown surprising capability in effectively reducing the dimensionality of design space and quickly converging it to a reasonable range for algorithms to step in and continue the search process. Therefore, modeling how human designers make decisions in such a sequential design process can help discover beneficial design patterns, strategies, and heuristics, which are essential to the development of new algorithms embedded with human intelligence to augment the computational design. In this paper, we develop a deep learning-based approach to model and predict designers’ sequential decisions in the systems design context. The core of this approach is an integration of the function-behavior-structure (FBS) model for design process characterization and the long short-term memory unit (LSTM) model for deep leaning. This approach is demonstrated in two case studies on solar energy system design, and its prediction accuracy is evaluated benchmarking on several commonly used models for sequential design decisions, such as the Markov Chain model, the Hidden Markov Chain model, and the random sequence generation model. The results indicate that the proposed approach outperforms the other traditional models. This implies that during a system design task, designers are very likely to rely on both short-term and long-term memory of past design decisions in guiding their future decision-making in the design process. Our approach can support human–computer interactions in design and is general to be applied in other design contexts as long as the sequential data of design actions are available. 
    more » « less