skip to main content


Title: An Experimental Study of Index Compression and DAAT Query Processing Methods
In the last two decades, the IR community has seen numerous advances in top-k query processing and inverted index compression techniques. While newly proposed methods are typically compared against several baselines, these evaluations are often very limited, and we feel that there is no clear overall picture on the best choices of algorithms and compression methods. In this paper, we attempt to address this issue by evaluating a number of state-of-the-art index compression methods and safe disjunctive DAAT query processing algorithms. Our goal is to understand how much index compression performance impacts overall query processing speed, how the choice of query processing algorithm depends on the compression method used, and how performance is impacted by document reordering techniques and the number of results returned, keeping in mind that current search engines typically use sets of hundreds or thousands of candidates for further reranking.  more » « less
Award ID(s):
1718680
NSF-PAR ID:
10171629
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
European Conference on Information Retrieval
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An inverted index is the basic data structure used in most current large-scale information retrieval systems. It can be modeled as a collection of sorted sequences of integers. Many compression techniques for inverted indexes have been studied in the past, with some of them reaching tremendous decompression speeds through the use of SIMD instructions available on modern CPUs. While there has been some work on query processing algorithms for Graphics Processing Units (GPUs), little of it has focused on how to efficiently access compressed index structures, and we see some potential for significant improvements in decompression speed. In this paper, we describe and implement two encoding schemes for index decompression on GPU architectures. Their format and decoding algorithm is adapted from existing CPU-based compression methods to exploit the execution model and memory hierarchy offered by GPUs. We show that our solutions, GPU-BP and GPU-VByte, achieve significant speedups over their already carefully optimized CPU counterparts. 
    more » « less
  2. Many content-based image search and instance retrieval systems implement bag-of-visual-words strategies for candidate selection. Visual processing of an image results in hundreds of visual words that make up a document, and these words are used to build an inverted index. Query processing then consists of an initial candidate selection phase that queries the inverted index, followed by more complex reranking of the candidates using various image features. The initial phase typically uses disjunctive top-k query processing algorithms originally proposed for searching text collections. Our objective in this paper is to optimize the performance of disjunctive top-k computation for candidate selection in content-based instance retrieval systems. While there has been extensive previous work on optimizing this phase for textual search engines, we are unaware of any published work that studies this problem for instance retrieval, where both index and query data are quite different from the distributions commonly found and exploited in the textual case. Using data from a commercial large-scale instance retrieval system, we address this challenge in three steps. First, we analyze the quantitative properties of index structures and queries in the system, and discuss how they differ from the case of text retrieval. Second, we describe an optimized term-at-a-time retrieval strategy that significantly outperforms baseline term-at-a-time and document-at-a-time strategies, achieving up to 66% speed-up over the most efficient baseline. Finally, we show that due to the different properties of the data, several common safe and unsafe early termination techniques from the literature fail to provide any significant performance benefits. 
    more » « less
  3. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues. 
    more » « less
  4. As the scale and complexity of high-performance computing (HPC) systems keep growing, data compression techniques are often adopted to reduce the data volume and processing time. While lossy compression becomes preferable to a lossless one because of the potential benefit of generating a high compression ratio, it would lose its worth the effort without finding an optimal balance between volume reduction and information loss. Among many lossy compression techniques, transform-based lossy algorithms utilize spatial redundancy better. However, the transform-based lossy compressor has received relatively less attention because there is a lack of understanding of its compression performance on scientific data sets. The insight of this paper is that, in transform-based lossy compressors, quantifying dominant coefficients at the block level reveals the right balance, potentially impacting overall compression ratios. Motivated by this, we characterize three transformation-based lossy compression mechanisms with different information compaction methods using the statistical features that capture data characteristics. And then, we build several prediction models using the statistical features and the characteristics of dominant coefficients and evaluate the effectiveness of each model using six HPC datasets from three production-level simulations at scale. Our results demonstrate that the random forest classifier captures the behavior of dominant coefficients precisely, achieving nearly 99% of prediction accuracy. 
    more » « less
  5. Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings. 
    more » « less