skip to main content


Title: Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics
The emergence of electrowetting-on-dielectric (EWOD) in the early 2000s made the once-obscure electrowetting phenomenon practical and led to numerous activities over the last two decades. As an eloquent microscale liquid handling technology that gave birth to digital microfluidics, EWOD has served as the basis for many commercial products over two major application areas: optical, such as liquid lenses and reflective displays, and biomedical, such as DNA library preparation and molecular diagnostics. A number of research or start-up companies ( e.g. , Phillips Research, Varioptic, Liquavista, and Advanced Liquid Logic) led the early commercialization efforts and eventually attracted major companies from various industry sectors ( e.g. , Corning, Amazon, and Illumina). Although not all of the pioneering products became an instant success, the persistent growth of liquid lenses and the recent FDA approvals of biomedical analyzers proved that EWOD is a powerful tool that deserves a wider recognition and more aggressive exploration. This review presents the history around major EWOD products that hit the market to show their winding paths to commercialization and summarizes the current state of product development to peek into the future. In providing the readers with a big picture of commercializing EWOD and digital microfluidics technology, our goal is to inspire further research exploration and new entrepreneurial adventures.  more » « less
Award ID(s):
1711708 1720499
PAR ID:
10171733
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Lab on a Chip
Volume:
20
Issue:
10
ISSN:
1473-0197
Page Range / eLocation ID:
1705 to 1712
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large-scale and controllable fabrication is an indispensable step for the industrialization and commercialization of halide perovskite nanocrystals, which are new-generation semiconductor materials for optoelectronic applications. Microfluidics, which provides continuous and precise synthesis, has been considered as a promising technique to fulfill this aspect. The research studies over the past decades have witnessed the advancement of microfluidics as a powerful tool in the fabrication of halide perovskite nanocrystals. In this Perspective, the state-of-the-art research based on microfluidics is introduced initially, including the synthesis of functional structures and materials, devices, as well as the interdisciplinary interactions between microfluidics and artificial intelligence and machine learning, etc. We then detail the issues and challenges in hindering progress in the above areas. Finally, we provide future directions and trends for the technology to achieve its full potential. This Perspective is expected to benefit the collective efforts between the field of nanomaterials and microfluidics in advanced manufacturing.

     
    more » « less
  2. Synopsis

    Scientists who work on bioinspired systems may see the potential for products resulting from their research, but are often unaware of the various steps or issues related to commercialization or product development. Commercialization topics lie outside the usual training of a basic biologist, and therefore much of their exposure to these topics is adventitious, such as from casual conversations at meetings. Thus, the information gleaned may be somewhat piecemeal. In this paper, I briefly summarize some of what I have learned over the last 10 years about commercialization from a variety of different sources, related to a bioinspired project in which I am involved. My collaborators and I have invented and patented a technology to entrap insect pests by a purely physical mechanism (a “physical insecticide” that does not involve a chemical insecticide). This bioinspired technology is based on a historical control method, in which leaves from bean plants were used to capture bed bugs for hundreds of years in parts of eastern Europe. Sharp recurved microstructures (nonglandular trichomes) on the leaf surfaces irreversibly impale the tarsi (feet) of the bed bugs as they walk over the surfaces, trapping them in place. Pest professionals have identified bed bugs as the most difficult pest to control; there is a clear need for new methods of control for this pest. There are societal benefits and consumer demand for products that are sustainable, without regulatory constraints, and that minimize insecticide exposure for humans. But how would these products be developed from this starting point of a bioinspired invention? I will briefly share some of our experiences in the early and ongoing product development of entrapping surfaces, with the hope that this might interest or aid others who are considering entrepreneurial activities. Unfamiliar topics such as intellectual property, customer segmentation, value propositions, business models, conflict of interest, and conflict of commitment may require some attention from prospective entrepreneurs. This brief and introductory overview is intended for those academic scientists with little to no experience or knowledge in the area of commercialization.

     
    more » « less
  3. Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies. 
    more » « less
  4. Nanocomposites provide outstanding benefits and possibilities compared to traditional composites but struggle to make it into the market due to the complexity and large number of associated challenges involved in, as well as lack of standards for, nanocomposite commercialization. This article proposes a commercialization framework utilizing market analysis and systems engineering to support the commercialization process of such high technologies. The article demonstrates the importance and usefulness of utilizing Model-Based Systems Engineering throughout the commercialization process of nanocomposite technologies when combining it with the Lean LaunchPad approach and an engineering analysis. The framework was validated using a qualitative research method with a case study approach. Applying this framework to a nanocomposite, called ZT-CFRP technology, showed tremendous impacts on the commercialization process, such as reduced market and technological uncertainties, which limits the commercialization risk and increases the chance for capital funding. Furthermore, utilizing the framework helped to decrease the commercialization time and cost due to the use of a lean engineering analysis. This framework is intended to assist advanced material-based companies, material scientists, researchers and entrepreneurs in academia and the industry during the commercialization process by minimizing uncertainties and risks, while focusing resources to reduce time-to-market and development costs. 
    more » « less
  5. Khoo, Iam Choon (Ed.)
    Lenses with tunable focal lengths play important roles in nature as well as modern technologies. In recent years, the demand for electrically tunable lenses and lens arrays has grown, driven by the increasing interest in augmented and virtual reality, as well as sensing applications. In this paper, we present a novel type of electrically tunable microlens utilizing polymer-stabilized chiral ferroelectric nematic liquid crystal. The lens offers a fast response time (5ms) and the focal length can be tuned by applying an in-plane electric field. The electrically induced change in the lens shape, facilitated by the remarkable sensitivity of the chiral ferroelectric nematic to electric fields, enables the tunable focal length capability. The achieved performance of this lens represents a significant advancement compared to electrowetting-based liquid lenses and opens exciting prospects in various fields, including biomimetic optics, security printing, solar energy concentration, and AR/VR devices. 
    more » « less