skip to main content


Title: Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics
The emergence of electrowetting-on-dielectric (EWOD) in the early 2000s made the once-obscure electrowetting phenomenon practical and led to numerous activities over the last two decades. As an eloquent microscale liquid handling technology that gave birth to digital microfluidics, EWOD has served as the basis for many commercial products over two major application areas: optical, such as liquid lenses and reflective displays, and biomedical, such as DNA library preparation and molecular diagnostics. A number of research or start-up companies ( e.g. , Phillips Research, Varioptic, Liquavista, and Advanced Liquid Logic) led the early commercialization efforts and eventually attracted major companies from various industry sectors ( e.g. , Corning, Amazon, and Illumina). Although not all of the pioneering products became an instant success, the persistent growth of liquid lenses and the recent FDA approvals of biomedical analyzers proved that EWOD is a powerful tool that deserves a wider recognition and more aggressive exploration. This review presents the history around major EWOD products that hit the market to show their winding paths to commercialization and summarizes the current state of product development to peek into the future. In providing the readers with a big picture of commercializing EWOD and digital microfluidics technology, our goal is to inspire further research exploration and new entrepreneurial adventures.  more » « less
Award ID(s):
1711708 1720499
NSF-PAR ID:
10171733
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Lab on a Chip
Volume:
20
Issue:
10
ISSN:
1473-0197
Page Range / eLocation ID:
1705 to 1712
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In 1995, Jesyca Durchin accepted a job as a producer at Mattel Media under Nancie Martin. The then-fledgling game and software studio had fewer than a dozen employees and existed at a distance from Mattel’s more central toy business Barbie Fashion Designer (Mattel Media, 1996) was Durchin’s first major project and is widely credited with catalyzing the girls’ game and software market in the mid-1990s. However, as Durchin discusses throughout this interview, the game’s success was not as immediate or automatic as might be assumed. In the first weekend of its release, Barbie Fashion Designer sold only eleven copies; Mattel CEO Jill Barad’s enthusiasm for the project and willingness to invest in a television commercial salvaged the situation. Most companies attempting to create the games-for-girls market lacked the resources of toy giant Mattel, of course, and the reality that even Mattel nearly failed to break through speaks volumes about the level of inertia that defined the mid-1990s computer and video game market. Over the past two decades, Durchin has worked extensively with Disney Imagineering; founded and sold her own startup, Digital Playspace; and today works as a senior producer at Warner Bros., where she is producing the company’s first AAA game featuring Wonder Woman. Her interests in storytelling, multimedia interface design, and play patterns have driven her professional trajectory and serve as useful examples of her audience-focused approach to media production. She summarizes her creative and design ethos as one of wish fulfillment, enabling players and audience members to experience the magic of making things better than they found them and using technology for creative ends. In this interview, Durchin reflects on her career, offering insights from her experiences creating games that girls love. She shares stories of early production discoveries that led to pivotal games like Barbie Fashion Designer, and she discusses the difficulties the field faced in trying to forge a more inclusive industry. Taken together, Durchin’s insights shed light on an important and often overlooked chapter of games history. 
    more » « less
  2. Broadband infrastructure in urban parks may serve crucial functions including an amenity to boost overall park use and a bridge to propagate WiFi access into contiguous neighborhoods. This project: SCC:PG Park WiFi as a BRIDGE to Community Resilience has developed a new model —Build Resilience through the Internet and Digital Greenspace Exposure, leveraging off-the-shelf WiFi technology, novel algorithms, community assets, and local partnerships to lower greenspace WiFi costs. This interdisciplinary work leverages: computer science, information studies, landscape architecture, and public health. Collaboration methodologies and relational definitions across disciplines are still nascent —especially when paired with civic-engaged, applied research. Student researchers (UG/Grad) are excellent partners in bridging disciplinary barriers and constraints. Their capacity to assimilate multiple frameworks has produced refinements to the project’s theoretical lenses and suggested novel socio-technical methodology improvements. Further, they are excellent ambassadors to community partners and stakeholders. In BRIDGE, we tested two mechanisms to augment student research participation. In both, we leveraged a classic, curriculum-based model named the Partnership for Action Learning in Sustainability program (PALS). This campus-wide, community-engaged initiative pairs faculty and students with community partners. PALS curates economic, environmental, and social sustainability challenges and scopes projects to customize appropriate coursework that addresses identified challenges. Outcomes include: literature searches, wireframes, and design plans that target solutions to civic problems. Constraints include the short semester timeframe and curriculum-learning-outcome constraints. (1) On BRIDGE, Dr. Kweon executed a semester-based Landscape Architecture PALS 400-level-studio. 18 undergraduates conducted in-class and in-field work to assess community needs and proposed design solutions for future park-wide WiFi. Research topics included: community-park history, neighborhood demographics, case-study analysis, and land-cover characteristics. The students conducted an in-Park, community engagement session —via interactive posterboard surveys, to gain input on what park amenities might be redesigned or added to promote WiFi use. The students then produced seven re-design plans; one included a café/garden, with an eco-corridor that integrated technology with nature. (2) From the classic, curriculum-based PALS model we created a summer-intensive for our five research assistants, to stimulate interdisciplinary collaboration in their research tasks and co-analysis of project data products: experimental technical WiFi-setup, community survey results, and stakeholder needs-assessments. Students met weekly with each other and team leadership, exchanged journal articles, and attended joint research events. This model shows promise for integrating students more formally into an interdisciplinary research project. An end-of-intensive focus group highlighted, from the students’ perspective, the pro/cons of this model. Results: In contrasting the two mechanisms, our results include: Model 1 is tried-and-trued and produces standardized, reliable products. However, as work is group based, student independence is limited —to explore topics/themes of interest. Civic groups are typically thrilled with the diversity of action plans produced. Model 2 provides greater independence in student-learning outcomes, fosters interdisciplinary, “dictionary-building” that can be used by the full team, deepens methodological approaches, and allows for student stipend payments. Lessons learned: intensive time frame needed more research team support and ideally should be extended, when possible, over the full project-span. UMD-IRB#1785365-4; NSF-award: 2125526. 
    more » « less
  3. Synopsis

    Scientists who work on bioinspired systems may see the potential for products resulting from their research, but are often unaware of the various steps or issues related to commercialization or product development. Commercialization topics lie outside the usual training of a basic biologist, and therefore much of their exposure to these topics is adventitious, such as from casual conversations at meetings. Thus, the information gleaned may be somewhat piecemeal. In this paper, I briefly summarize some of what I have learned over the last 10 years about commercialization from a variety of different sources, related to a bioinspired project in which I am involved. My collaborators and I have invented and patented a technology to entrap insect pests by a purely physical mechanism (a “physical insecticide” that does not involve a chemical insecticide). This bioinspired technology is based on a historical control method, in which leaves from bean plants were used to capture bed bugs for hundreds of years in parts of eastern Europe. Sharp recurved microstructures (nonglandular trichomes) on the leaf surfaces irreversibly impale the tarsi (feet) of the bed bugs as they walk over the surfaces, trapping them in place. Pest professionals have identified bed bugs as the most difficult pest to control; there is a clear need for new methods of control for this pest. There are societal benefits and consumer demand for products that are sustainable, without regulatory constraints, and that minimize insecticide exposure for humans. But how would these products be developed from this starting point of a bioinspired invention? I will briefly share some of our experiences in the early and ongoing product development of entrapping surfaces, with the hope that this might interest or aid others who are considering entrepreneurial activities. Unfamiliar topics such as intellectual property, customer segmentation, value propositions, business models, conflict of interest, and conflict of commitment may require some attention from prospective entrepreneurs. This brief and introductory overview is intended for those academic scientists with little to no experience or knowledge in the area of commercialization.

     
    more » « less
  4. A prototype aerosol detection system is presented that is designed to accurately and quickly measure the concentration of selected inorganic ions in the atmosphere. The aerosol detection system combines digital microfluidics technology, aerosol impaction and chemical detection integrated on the same chip. Target compounds are the major inorganic aerosol constituents: sulfate, nitrate and ammonium. The digital microfluidic system consists of top and bottom plates that sandwich a fluid layer. Nozzles for an inertial impactor are built into the top plate according to known, scaling principles. The deposited air particles are densely concentrated in well-defined deposits on the bottom plate containing droplet actuation electrodes of the chip in fixed areas. The aerosol collection efficiency for particles larger than 100 nm in diameter was higher than 95%. After a collection phase, deposits are dissolved into a scanning droplet. Due to a sub-microliter droplet size, the obtained extract is highly concentrated. Droplets then pass through an air/oil interface on chip for colorimetric analysis by spectrophotometry using optical fibers placed between the two plates of the chip. To create a standard curve for each analyte, six different concentrations of liquid standards were chosen for each assay and dispensed from on-chip reservoirs. The droplet mixing was completed in a few seconds and the final droplet was transported to the detection position as soon as the mixing was finished. Limits of detection (LOD) in the final droplet were determined to be 11 ppm for sulfate and 0.26 ppm for ammonium. For nitrate, it was impossible to get stable measurements. The LOD of the on-chip measurements for sulfate was close to that obtained by an off-chip method using a Tecan spectrometer. LOD of the on-chip method for ammonium was about five times larger than what was obtained with the off-chip method. For the current impactor collection air flow (1 L/min) and 1 h collection time, the converted LODs in air were: 0.275 μg/m3 for sulfate, 6.5 ng/m3 for ammonium, sufficient for most ambient air monitoring applications. 
    more » « less
  5. On August 9-10, 2023, the Thomas J. O’Keefe Institute for Sustainable Supply of Strategic Minerals at Missouri University of Science and Technology (Missouri S&T) hosted the third annual workshop on ‘Resilient Supply of Critical Minerals’. The workshop was funded by the National Science Foundation (NSF) and was attended by 218 participants. 128 participants attended in-person in the Havener Center on the Missouri S&T campus in Rolla, Missouri, USA. Another 90 participants attended online via Zoom. Fourteen participants (including nine students) received travel support through the NSF grant to attend the conference in Rolla. Additionally, the online participation fee was waived for another six students and early career researchers to attend the workshop virtually. Out of the 218 participants, 190 stated their sectors of employment during registration showing that 87 participants were from academia (32 students), 62 from the private sector and 41 from government agencies. Four topical sessions were covered: A. The Critical Mineral Potential of the USA: Evaluation of existing, and exploration for new resources. B. Mineral Processing and Recycling: Maximizing critical mineral recovery from existing production streams. C. Critical Mineral Policies: Toward effective and responsible governance. D. Resource Sustainability: Ethical and environmentally sustainable supply of critical minerals. Each topical session was composed of two keynote lectures and complemented by oral and poster presentations by the workshop participants. Additionally, a panel discussion with panelists from academia, the private sector and government agencies was held that discussed ‘How to grow the American critical minerals workforce’. The 2023 workshop was followed by a post-workshop field trip to the lead-zinc mining operations of the Doe Run Company in southeast Missouri that was attended by 18 workshop participants from academia (n=10; including 4 students), the private sector (n=4), and government institutions (n=4). Discussions during the workshop led to the following suggestions to increase the domestic supply of critical minerals: (i) Research to better understand the geologic critical mineral potential of the USA, including primary reserves/resources, historic mine wastes, and mineral exploration potential. (ii) Development of novel extraction techniques targeted at the recovery of critical minerals as co-products from existing production streams, mine waste materials, and recyclables. (iii) Faster and more transparent permitting processes for mining and mineral processing operations. (iv) A more environmentally sustainable and ethical approach to mining and mineral processing. (v) Development of a highly skilled critical minerals workforce. This workshop report provides a detailed summary of the workshop discussions and describes a way forward for this workshop series for 2024 and beyond. 
    more » « less