Background: The progressive cognitive decline, an integral component of Alzheimer’s disease (AD), unfolds in tandem with the natural aging process. Neuroimaging features have demonstrated the capacity to distinguish cognitive decline changes stemming from typical brain aging and AD between different chronological points. Objective: To disentangle the normal aging effect from the AD-related accelerated cognitive decline and unravel its genetic components using a neuroimaging-based deep learning approach. Methods: We developed a deep-learning framework based on a dual-loss Siamese ResNet network to extract fine-grained information from the longitudinal structural magnetic resonance imaging (MRI) data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. We then conducted genome-wide association studies (GWAS) and post-GWAS analyses to reveal the genetic basis of AD-related accelerated cognitive decline. Results: We used our model to process data from 1,313 individuals, training it on 414 cognitively normal people and predicting cognitive assessment for all participants. In our analysis of accelerated cognitive decline GWAS, we identified two genome-wide significant loci: APOE locus (chromosome 19 p13.32) and rs144614292 (chromosome 11 p15.1). Variant rs144614292 (G > T) has not been reported in previous AD GWA studies. It is within the intronic region of NELL1, which is expressed in neurons and plays a role in controlling cell growth and differentiation. The cell-type-specific enrichment analysis and functional enrichment of GWAS signals highlighted the microglia and immune-response pathways. Conclusions: Our deep learning model effectively extracted relevant neuroimaging features and predicted individual cognitive decline. We reported a novel variant (rs144614292) within the NELL1 gene.
more »
« less
Evaluation of the Common Molecular Basis in Alzheimer’s and Parkinson’s Diseases
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common neurodegenerative disorders related to aging. Though several risk factors are shared between these two diseases, the exact relationship between them is still unknown. In this paper, we analyzed how these two diseases relate to each other from the genomic, epigenomic, and transcriptomic viewpoints. Using an extensive literature mining, we first accumulated the list of genes from major genome-wide association (GWAS) studies. Based on these GWAS studies, we observed that only one gene (HLA-DRB5) was shared between AD and PD. A subsequent literature search identified a few other genes involved in these two diseases, among which SIRT1 seemed to be the most prominent one. While we listed all the miRNAs that have been previously reported for AD and PD separately, we found only 15 different miRNAs that were reported in both diseases. In order to get better insights, we predicted the gene co-expression network for both AD and PD using network analysis algorithms applied to two GEO datasets. The network analysis revealed six clusters of genes related to AD and four clusters of genes related to PD; however, there was very low functional similarity between these clusters, pointing to insignificant similarity between AD and PD even at the level of affected biological processes. Finally, we postulated the putative epigenetic regulator modules that are common to AD and PD.
more »
« less
- Award ID(s):
- 1802588
- PAR ID:
- 10171819
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 20
- Issue:
- 15
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 3730
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundAlthough genome-wide association studies (GWAS) have successfully located various genetic variants susceptible to Alzheimer’s Disease (AD), it is still unclear how specific variants interact with genes and tissues to elucidate pathologies associated with AD. Summary-data-based Mendelian Randomization (SMR) addresses this problem through an instrumental variable approach that integrates data from independent GWAS and expression quantitative trait locus (eQTL) studies in order to infer a causal effect of gene expression on a trait. ResultsOur study employed the SMR approach to integrate a set of meta-analytic cis-eQTL information from the Genotype-Tissue Expression (GTEx), CommonMind Consortium (CMC), and Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) consortiums with three sets of meta-analysis AD GWAS results. ConclusionsOur analysis identified twelve total gene probes (associated with twelve distinct genes) with a significant association with AD. Four of these genes survived a test of pleiotropy from linkage (the HEIDI test).Three of these genes – RP11-385F7.1, PRSS36, and AC012146.7 – have not yet been reported differentially expressed in the brain in the context of AD, and thus are the novel findings warranting further investigation.more » « less
-
Abstract Background There is growing evidence indicating that a number of functional connectivity networks are disrupted at each stage of the full clinical Alzheimer’s disease spectrum. Such differences are also detectable in cognitive normal (CN) carrying mutations of AD risk genes, suggesting a substantial relationship between genetics and AD-altered functional brain networks. However, direct genetic effect on functional connectivity networks has not been measured. Methods Leveraging existing AD functional connectivity studies collected in NeuroSynth, we performed a meta-analysis to identify two sets of brain regions: ones with altered functional connectivity in resting state network and ones without. Then with the brain-wide gene expression data in the Allen Human Brain Atlas, we applied a new biclustering method to identify a set of genes with differential co-expression patterns between these two set of brain regions. Results Differential co-expression analysis using biclustering method led to a subset of 38 genes which showed distinctive co-expression patterns between AD-related and non AD-related brain regions in default mode network. More specifically, we observed 4 sub-clusters with noticeable co-expression difference, where the difference in correlations is above 0.5 on average. Conclusions This work applies a new biclustering method to search for a subset of genes with altered co-expression patterns in AD-related default mode network regions. Compared with traditional differential expression analysis, differential co-expression analysis yielded many more significant hits with extra insights into the wiring mechanism between genes. Particularly, the differential co-expression pattern was observed between two sets of genes, suggesting potential upstream genetic regulators in AD development.more » « less
-
Abstract Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder and the most common type of dementia. AD is characterized by a decline of cognitive function and brain atrophy, and is highly heritable with estimated heritability ranging from 60 to 80 $$\%$$ % . The most straightforward and widely used strategy to identify AD genetic basis is to perform genome-wide association study (GWAS) of the case-control diagnostic status. These GWAS studies have identified over 50 AD related susceptibility loci. Recently, imaging genetics has emerged as a new field where brain imaging measures are studied as quantitative traits to detect genetic factors. Given that many imaging genetics studies did not involve the diagnostic outcome in the analysis, the identified imaging or genetic markers may not be related or specific to the disease outcome. Results We propose a novel method to identify disease-related genetic variants enriched by imaging endophenotypes, which are the imaging traits associated with both genetic factors and disease status. Our analysis consists of three steps: (1) map the effects of a genetic variant (e.g., single nucleotide polymorphism or SNP) onto imaging traits across the brain using a linear regression model, (2) map the effects of a diagnosis phenotype onto imaging traits across the brain using a linear regression model, and (3) detect SNP-diagnosis association via correlating the SNP effects with the diagnostic effects on the brain-wide imaging traits. We demonstrate the promise of our approach by applying it to the Alzheimer’s Disease Neuroimaging Initiative database. Among 54 AD related susceptibility loci reported in prior large-scale AD GWAS, our approach identifies 41 of those from a much smaller study cohort while the standard association approaches identify only two of those. Clearly, the proposed imaging endophenotype enriched approach can reveal promising AD genetic variants undetectable using the traditional method. Conclusion We have proposed a novel method to identify AD genetic variants enriched by brain-wide imaging endophenotypes. This approach can not only boost detection power, but also reveal interesting biological pathways from genetic determinants to intermediate brain traits and to phenotypic AD outcomes.more » « less
-
BackgroundUnderstanding genetic underpinnings of immune-mediated inflammatory diseases is crucial to improve treatments. Single-cell RNA sequencing (scRNA-seq) identifies cell states expanded in disease, but often overlooks genetic causality due to cost and small genotyping cohorts. Conversely, large genome-wide association studies (GWAS) are commonly accessible. MethodsWe present a 3-step robust benchmarking analysis of integrating GWAS and scRNA-seq to identify genetically relevant cell states and genes in inflammatory diseases. First, we applied and compared the results of three recent algorithms, based on pathways (scGWAS), single-cell disease scores (scDRS), or both (scPagwas), according to accuracy/sensitivity and interpretability. While previous studies focused on coarse cell types, we used disease-specific, fine-grained single-cell atlases (183,742 and 228,211 cells) and GWAS data (Ns of 97,173 and 45,975) for rheumatoid arthritis (RA) and ulcerative colitis (UC). Second, given the lack of scRNA-seq for many diseases with GWAS, we further tested the tools’ resolution limits by differentiating between similar diseases with only one fine-grained scRNA-seq atlas. Lastly, we provide a novel evaluation of noncoding SNP incorporation methods by testing which enabled the highest sensitivity/accuracy of known cell-state calls. ResultsWe first found that single-cell based tools scDRS and scPagwas called superior numbers of supported cell states that were overlooked by scGWAS. While scGWAS and scPagwas were advantageous for gene exploration, scDRS effectively accounted for batch effect and captured cellular heterogeneity of disease-relevance without single-cell genotyping. For noncoding SNP integration, we found a key trade-off between statistical power and confidence with positional (e.g. MAGMA) and non-positional approaches (e.g. chromatin-interaction, eQTL). Even when directly incorporating noncoding SNPs through 5’ scRNA-seq measures of regulatory elements, non disease-specific atlases gave misleading results by not containing disease-tissue specific transcriptomic patterns. Despite this criticality of tissue-specific scRNA-seq, we showed that scDRS enabled deconvolution of two similar diseases with a single fine-grained scRNA-seq atlas and separate GWAS. Indeed, we identified supported and novel genetic-phenotype linkages separating RA and ankylosing spondylitis, and UC and crohn’s disease. Overall, while noting evolving single-cell technologies, our study provides key findings for integrating expanding fine-grained scRNA-seq, GWAS, and noncoding SNP resources to unravel the complexities of inflammatory diseases.more » « less
An official website of the United States government

