Classical mechanisms of volcanic eruptions mostly involve pressure buildup and magma ascent towards the surface1. Such processes produce geophysical and geochemical signals that may be detected and interpreted as eruption precursors1–3. On 22 May 2021, Mount Nyiragongo (Democratic Republic of the Congo), an open-vent volcano with a persistent lava lake perched within its summit crater, shook up this interpretation by producing an approximately six-hour-long flank eruption without apparent precursors, followed—rather than preceded—by lateral magma motion into the crust. Here we show that this reversed sequence was most likely initiated by a rupture of the edifice, producing deadly lava flows and triggering a voluminous 25-km-long dyke intrusion. The dyke propagated southwards at very shallow depth (less than 500 m) underneath the cities of Goma (Democratic Republic of the Congo) and Gisenyi (Rwanda), as well as Lake Kivu. This volcanic crisis raises new questions about the mechanisms controlling such eruptions and the possibility of facing substantially more hazardous events, such as effusions within densely urbanized areas, phreato-magmatism or a limnic eruption from the gas-rich Lake Kivu. It also more generally highlights the challenges faced with open-vent volcanoes for monitoring, early detection and risk management when a significant volume of magma is stored close to the surface.
The processes and ranges of intensive variables that control magma transport and dyke propagation through the crust are poorly understood. Here we show that textural and compositional data of olivine crystals (Mg/Fe, Ni and P) from the tephra of the first months of Paricutin volcano monogenetic eruption (Mexico, 1943–1952) record fast growth and large temperature and oxygen fugacity gradients. We interpret that these gradients are due to convective magma transport in a propagating dyke to the Earth’s surface in less than a few days. The shortest time we have obtained is 0.1 day, and more than 50% of the calculated timescales are < 2 days for the earliest erupted tephra, which implies magma ascent rates of about 0.1 and 1 m s−1. The olivine zoning patterns change with the eruptive stratigraphy, and record a transition towards a more steady magma flow before the transition from explosive to effusive dynamics. Our results can inform numerical and experimental analogue models of dyke propagation, and thus facilitate a better understanding of the seismicity and other precursors of dyke-fed eruptions.
more » « less- NSF-PAR ID:
- 10171845
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The feedback between dyke and sill intrusions and the evolution of stresses within volcanic systems is poorly understood, despite its importance for magma transport and volcano instability. Long-lived ocean island volcanoes are crosscut by thousands of dykes, which must be accommodated through a combination of flank slip and visco-elastic deformation. Flank slip is dominant in some volcanoes (e.g., Kilauea), but how intrusions are accommodated in other volcanic systems remains unknown. Here we apply digital mapping techniques to collect > 400,000 orientation and aperture measurements from 519 sheet intrusions within Volcán Taburiente (La Palma, Canary Islands, Spain) and investigate their emplacement and accommodation. We show that vertically ascending dykes were deflected to propagate laterally as they approached the surface of the volcano, forming a radial dyke swarm, and propose a visco-elastic model for their accommodation. Our model reproduces the measured dyke-aperture distribution and predicts that stress accumulates within densely intruded regions of the volcano, blocking subsequent dykes and causing eruptive activity to migrate. These results have significant implications for the organisation of magma transport within volcanic edifices, and the evolution and stability of long-lived volcanic systems.
-
Frey, Bonnie A. ; Kelley, Shari A. ; Zeigler, Kate E. ; McLemore, Virginia T. ; Goff, Fraser ; Ulmer-Scholle, Dana S. (Ed.)Monogenetic small-volume basaltic volcanoes are the most abundant subaerial volcanic landforms on Earth but are some of the most poorly understood systems. Their short durations, small volumes, and lack of recurrence make monitoring and hazard assessment difficult. The Zuni-Bandera volcanic field in western New Mexico contains small-volume basaltic centers erupting tholeiitic to alkalic basalts. Evidence shows no correlation of magma composition with eruption age, location, or volumetric output, prompting questions about the influence of magma ascent rates, magma storage conditions, and mantle source characteristics on lava compositions. Here, we present olivine major and minor element mineral chemistry from the 3200-year-old McCartys Flow, the youngest tholeiite basalt in the volcanic field. Olivine displays four phenocryst types with unique textures and major and minor element compositions. Multiple olivine types co-exist at the thin section scale. Major and minor element diffusion at frozen melt–phenocryst interfaces was modeled, revealing magma residence times ranging from 3–9 months. Type 3 olivine phenocrysts require step function initial conditions and record diffusion re-equilibration followed by magma mixing. These profiles indicate the magma resided in the reservoir for 10–15 years and accumulated from multiple batches of mixed magmas less than 10 days before the eruption. Our results show that primitive magmas in small-volume monogenetic volcanoes have complex lithospheric magmatic histories and stored in magma bodies influenced by an open system to develop different local chemical environments.more » « less
-
Abstract Olivine‐hosted melt inclusions are an important archive of pre‐eruptive processes such as magma storage, mixing and subsequent ascent through the crust. However, this record can be modified by post‐entrapment diffusion of H+through the olivine lattice. Existing studies often use spherical or 1D models to track melt inclusion dehydration that fail to account for complexities in geometry, diffusive anisotropy and sectioning effects. Here we develop a finite element 3D multiphase diffusion model for the dehydration of olivine‐hosted melt inclusions that includes natural crystal geometries and multiple melt inclusions. We use our 3D model to test the reliability of simplified analytical and numerical models (1D and 2D) using magma ascent conditions from the 1977 eruption of Seguam volcano, Alaska. We find that 1D models underestimate melt inclusion water loss, typically by ∼30%, and thus underestimate magma decompression rates, by up to a factor of 5, when compared to the 3D models. An anisotropic analytical solution that we present performs well and recovers decompression rates within a factor of 2, in the situations in which it is valid. 3D models that include multiple melt inclusions show that inclusions can shield each other and reduce the amount of water loss upon ascent. This shielding effect depends on decompression rate, melt inclusion size, and crystallographic direction. Our modeling approach shows that factors such as 3D crystal geometry and melt inclusion configuration can play an important role in constraining accurate decompression rates and recovering water contents in natural magmatic systems.
-
Abstract Interpreting unrest at silicic volcanoes requires knowledge of the magma storage conditions and dynamics that precede eruptions. The Laguna del Maule volcanic field, Chile, has erupted ~40 km3of rhyolite over the last 20 ka. Astonishing rates of sustained surface inflation at >25 cm/year for >12 years reveal a large, restless system. Integration of geochronologic, petrologic, geomorphic, and geophysical observations provides an unusually rich context to interpret ongoing and prehistoric processes. We present new volatile (H2O, CO2, S, F, and Cl), trace element, and major element concentrations from 109 melt inclusions hosted in quartz, plagioclase, and olivine from seven eruptions. Silicic melts contain up to 8.0 wt. % H2O and 570 ppm CO2. In rhyolites melt inclusions track decompression‐driven fractional crystallization as magma ascended from ~14 to 4 km. This mirrors teleseismic tomography and magnetotelluric findings that reveal a domain containing partial melt spanning from 14 to 4 km. Ce and Cl contents of rhyolites support the generation of compositionally distinct domains of eruptible rhyolite within the larger reservoir. Heat, volatiles, and melt derived from episodic mafic recharge likely incubate and grow the shallow reservoir. Olivine‐hosted melt inclusions in mafic tephra contain up to 2.5 wt. % H2O and 1,140 ppm CO2and proxy for the volatile load delivered via recharge into the base of the silicic mush at ~14 to 8 km. We propose that mafic recharge flushes deeper reaches of the magma reservoir with CO2that propels H2O exsolution, upward accumulation of fluid, pressurization, and triggering of rhyolitic eruptions.