skip to main content


Title: Functionalized electrospun polymer nanofibers for treatment of water contaminated with uranium
Uranium (U) contamination of drinking water often affects communities with limited resources, presenting unique technology challenges for U 6+ treatment. Here, we develop a suite of chemically functionalized polymer (polyacrylonitrile; PAN) nanofibers for low pressure reactive filtration applications for U 6+ removal. Binding agents with either nitrogen-containing or phosphorous-based ( e.g. , phosphonic acid) functionalities were blended (at 1–3 wt%) into PAN sol gels used for electrospinning, yielding functionalized nanofiber mats. For comparison, we also functionalized PAN nanofibers with amidoxime (AO) moieties, a group well-recognized for its specificity in U 6+ uptake. For optimal N-based (Aliquat® 336 or Aq) and P-containing [hexadecylphosphonic acid (HPDA) and bis(2-ethylhexyl)phosphate (HDEHP)] binding agents, we then explored their use for U 6+ removal across a range of pH values (pH 2–7), U 6+ concentrations (up to 10 μM), and in flow through systems simulating point of use (POU) water treatment. As expected from the use of quaternary ammonium groups in ion exchange, Aq-containing materials appear to sequester U 6+ by electrostatic interactions; while uptake by these materials is limited, it is greatest at circumneutral pH where positively charged N groups bind negatively charged U 6+ complexes. In contrast, HDPA and HDEHP perform best at acidic pH representative of mine drainage, where surface complexation of the uranyl cation likely drives uptake. Complexation by AO exhibited the best performance across all pH values, although U 6+ uptake via surface precipitation may also occur near circumneutral pH values and at high (10 μM) dissolved U 6+ concentrations. In simulated POU treatment studies using a dead-end filtration system, we observed U removal in AO-PAN systems that is insensitive to common co-solutes in groundwater ( e.g. , hardness and alkalinity). While more research is needed, our results suggest that only 80 g (about 0.2 lbs.) of AO-PAN filter material would be needed to treat an individual's water supply (contaminated at ten-times the U.S. EPA maximum contaminant level for U) for one year.  more » « less
Award ID(s):
1914490
PAR ID:
10172088
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Volume:
6
Issue:
3
ISSN:
2053-1400
Page Range / eLocation ID:
622 to 634
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study presents the development of an innovative nanofibrous membrane to remove microplastics (MPs) from drinking water. This membrane exhibits additional functionality in removing lead (Pb), highlighting its promising potential for utilization as a point‐of‐use (POU) device. The polyvinyl alcohol (PVA) nanofibrous membranes are crosslinked using glutaraldehyde, and their efficiencies in the removal of MPs are evaluated. The results show that crosslinking the 7 and 10 wt% PVA nanofibers increases their average diameters to 330 and 581 nm, respectively, and enhances their surface area. The treatment efficiency of crosslinked PVA fibrous media is evaluated using polyethylene (PE) (5 μm ≤d ≤ 25 μm) and polystyrene (PS) MPs (d ≤ 1 μm). The filtration efficiencies of both 7 and 10 wt% c‐PVA nanofibrous media are found to be 99.8% ± 0.1% in the removal of PE MPs at pH 8. Further examination of the filtration efficiency in the removal of PS MPs shows that the highest removal efficiency achieved was 77.3% ± 1.4% at a pH of 6. Additionally, the lead removal efficiency of this fibrous membrane in flow‐through experiments is examined. Results show a pH‐dependent lead removal efficiency, in which the greatest efficiency of 69% is found at pH 6.

     
    more » « less
  2. Based on tunable properties, engineered nanoparticles (NPs) hold significant promise for water treatment technologies. Motivated by concerns regarding toxicity and non-biodegradability of some nanoparticles, we explored engineered magnetite (Fe 3 O 4 ) nanoparticles with a biocompatible coating. These were prepared with a coating of rhamnolipid, a biosurfactant primarily obtained from Pseudomonas aeruginosa . By optimizing synthesis and phase transfer conditions, particles were observed to be monodispersed and stable in water under environmentally relevant pH and ionic strength values. These materials were evaluated for U( vi ) removal from water at varying dissolved inorganic carbon and pH conditions. The rhamnolipid-coated iron oxide nanoparticles (IONPs) showed high sorption capacities at pH 6 and pH 8 in both carbonate-free systems and systems in equilibrium with atmospheric CO 2 . Equilibrium sorption behavior was interpreted using surface complexation modeling (SCM). Two models (diffuse double layer and non-electrostatic) were evaluated for their ability to account for U( vi ) binding to the carboxyl groups of the rhamnolipid coating as a function of the pH, total U( vi ) loading, and dissolved inorganic carbon concentration. The diffuse double layer model provided the best simulation of the adsorption data and was sensitive to U( vi ) loadings as it accounted for the change in the surface charge associated with U( vi ) adsorption. 
    more » « less
  3. null (Ed.)
    The recalcitrance of some emerging organic contaminants through conventional water treatment systems may necessitate advanced technologies that use highly reactive, non-specific hydroxyl radicals. Here, polyacrylonitrile (PAN) nanofibers with embedded titanium dioxide (TiO 2 ) nanoparticles were synthesized via electrospinning and subsequently carbonized to produce mechanically stable carbon/TiO 2 (C/TiO 2 ) nanofiber composite filters. Nanofiber composites were optimized for reactivity in flow through treatment systems by varying their mass loading of TiO 2 , adding phthalic acid (PTA) as a dispersing agent for nanoparticles in electrospinning sol gels, comparing different types of commercially available TiO 2 nanoparticles (Aeroxide® P25 and 5 nm anatase nanoparticles) and through functionalization with gold (Au/TiO 2 ) as a co-catalyst. High bulk and surface TiO 2 concentrations correspond with enhanced nanofiber reactivity, while PTA as a dispersant makes it possible to fabricate materials at very high P25 loadings (∼80% wt%). The optimal composite formulation (50 wt% P25 with 2.5 wt% PTA) combining high reactivity and material stability was then tested across a range of variables relevant to filtration applications including filter thickness (300–1800 μm), permeate flux (from 540–2700 L m −2 h), incident light energy (UV-254 and simulated sunlight), flow configuration (dead-end and cross-flow filtration), presence of potentially interfering co-solutes (dissolved organic matter and carbonate alkalinity), and across a suite of eight organic micropollutants (atrazine, benzotriazole, caffeine, carbamazepine, DEET, metoprolol, naproxen, and sulfamethoxazole). During cross-flow recirculation under UV-irradiation, 300 μm thick filters (30 mg total mass) produced micropollutant half-lives ∼45 min, with 40–90% removal (from an initial 0.5 μM concentration) in a single pass through the filter. The initial reaction rate coefficients of micropollutant transformation did not clearly correlate with reported second order rate coefficients for reaction with hydroxyl radical ( k OH ), implying that processes other than reaction with photogenerated hydroxyl radical ( e.g. , surface sorption) may control the overall rate of transformation. The materials developed herein represent a promising next-generation filtration technology that integrates photocatalytic activity in a robust platform for nanomaterial-enabled water treatment. 
    more » « less
  4. The co-occurrence of uranyl and arsenate in contaminated water caused by natural processes and mining is a concern for impacted communities, including in Native American lands in the U.S. Southwest. We investigated the simultaneous removal of aqueous uranyl and arsenate after the reaction with limestone and precipitated hydroxyapatite (HAp, Ca10(PO4)6(OH)2). In benchtop experiments with an initial pH of 3.0 and initial concentrations of 1 mM U and As, uranyl and arsenate coprecipitated in the presence of 1 g L−1 limestone. However, related experiments initiated under circumneutral pH conditions showed that uranyl and arsenate remained soluble. Upon addition of 1 mM PO43− and 3 mM Ca2+ in solution (initial concentration of 0.05 mM U and As) resulted in the rapid removal of over 97% of U via Ca−U−P precipitation. In experiments with 2 mM PO4 3− and 10 mM Ca2+ at pH rising from 7.0 to 11.0, aqueous concentrations of As decreased (between 30 and 98%) circa pH 9. HAp precipitation in solids was confirmed by powder X-ray diffraction and scanning electron microscopy/energy dispersive X-ray. Electron microprobe analysis indicated U was coprecipitated with Ca and P, while As was mainly immobilized through HAp adsorption. The results indicate that natural materials, such as HAp and limestone, can effectively remove uranyl and arsenate mixtures. 
    more » « less
  5. Electrospun polyacrylonitrile (PAN) nanofibers integrated with different loadings of the photosensitizer rose bengal (RB) were synthesized for photodynamic inactivation of bacteria. Our results suggest that the ionic strength in the medium does not significantly affect the RB release from the RB-integrated electrospun PAN nanofibers (RBiEPNs), which could release RB effectively in phosphate-buffered saline (PBS), physiological saline (0.85% NaCl), and deionized H 2 O. However, the pH of the medium significantly influenced the release of RB. A larger amount of RB was released in PBS at a higher pH (RB release: pH 9.0 > pH 7.4 > pH 5.0). The RBiEPNs depicted high antimicrobial efficacy against both Gram-negative Escherichia coli ( E. coli ) and Gram-positive Bacillus subtilis ( B. subtilis ) bacteria under white light irradiation. The antimicrobial efficacy was potent and immediate against the bacterial cells, especially B. subtilis . The RBiEPNs containing 0.33 wt% RB demonstrated complete bacterial kills for B. subtilis and E. coli cells with log reductions of 5.76 and 5.94 in 30 s and 40 min, respectively. The generation of intracellular reactive oxygen species (iROS) was examined after white light treatment of the bacterial cells in the presence of the RBiEPNs. A significant correlation was found between the amount of iROS and the antimicrobial efficacy of the RBiEPNs. The high antimicrobial efficacy could be attributed to several factors, such as the encapsulation efficiency, loading capacity, and RB release behavior of the RBiEPNs, the presence of white light, and the generation of iROS. Taken together, the facile incorporation of a photosensitizer into polymeric nanofibers via blend electrospinning offers a feasible strategy for water disinfection. 
    more » « less