skip to main content


Title: Utilizing phase delays of an integrated pixel-array structure to generate orbital-angular-momentum beams with tunable orders and a broad bandwidth

We study the relationship between the input phase delays and the output mode orders when using a pixel-array structure fed by multiple single-mode waveguides for tunable orbital-angular-momentum (OAM) beam generation. As an emitter of a free-space OAM beam, the designed structure introduces a transformation function that shapes and coherently combines multiple (e.g., four) equal-amplitude inputs, with thekth input carrying a phase delay of(k−<#comment/>1)Δ<#comment/>φ<#comment/>. The simulation results show that (1) the generated OAM order ℓ is dependent on the relative phase delayΔ<#comment/>φ<#comment/>; (2) the transformation function can be tailored by engineering the structure to support different tunable ranges (e.g., l={−<#comment/>1},{−<#comment/>1,+1},{−<#comment/>1,0,+1}, or{−<#comment/>2,−<#comment/>1,+1,+2}); and (3) multiple independent coaxial OAM beams can be generated by simultaneously feeding the structure with multiple independent beams, such that each beam has its ownΔ<#comment/>φ<#comment/>value for the four inputs. Moreover, there is a trade-off between the tunable range and the mode purity, bandwidth, and crosstalk, such that the increase of the tunable range leads to (a) decreased mode purity (from 91% to 75% forl=−<#comment/>1), (b) decreased 3 dB bandwidth of emission efficiency (from 285 nm forl={−<#comment/>1}to 122 nm forl={−<#comment/>2,−<#comment/>1,+1,+2}), and (c) increased crosstalk within the C-band (from−<#comment/>23.7to−<#comment/>13.2dBwhen the tunable range increases from 2 to 4).

 
more » « less
NSF-PAR ID:
10172268
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
15
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 4144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on spectroscopic measurements on the4f76s28S7/2∘<#comment/>→<#comment/>4f7(8S∘<#comment/>)6s6p(1P∘<#comment/>)8P9/2transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the6s6p(1P∘<#comment/>)8P9/2state were found to beA(151)=−<#comment/>228.84(2)MHz,B(151)=226.9(5)MHzandA(153)=−<#comment/>101.87(6)MHz,B(153)=575.4(1.5)MHz, which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results.

     
    more » « less
  2. The mid-IR spectroscopic properties ofEr3+doped low-phononCsCdCl3andCsPbCl3crystals grown by the Bridgman technique have been investigated. Using optical excitations at∼<#comment/>800nmand∼<#comment/>660nm, both crystals exhibited IR emissions at∼<#comment/>1.55,∼<#comment/>2.75,∼<#comment/>3.5, and∼<#comment/>4.5µ<#comment/>mat room temperature. The mid-IR emission at 4.5 µm, originating from the4I9/2→<#comment/>4I11/2transition, showed a long emission lifetime of∼<#comment/>11.6msforEr3+dopedCsCdCl3, whereasEr3+dopedCsPbCl3exhibited a shorter lifetime of∼<#comment/>1.8ms. The measured emission lifetimes of the4I9/2state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the4I9/2→<#comment/>4I11/2transition inEr3+dopedCsCdCl3andCsPbCl3were determined to be∼<#comment/>0.14×<#comment/>10−<#comment/>20cm2and∼<#comment/>0.41×<#comment/>10−<#comment/>20cm2, respectively. The results of Judd–Ofelt analysis are presented and discussed.

     
    more » « less
  3. A study of short-gated 10 nanosecond (ns), 100 picosecond (ps), and 100 femtosecond (fs) laser induced breakdown spectroscopy (LIBS) was conducted for fuel-to-air ratio (FAR) measurements in an atmospheric Hencken flame. The intent of the work is to understand which emission lines are available near the optical range in each pulse width regime and which emission ratios may be favorable for generating equivalence ratio calibration curves. The emission spectra in the range of 550–800 nm for ns-LIBS and ps-LIBS are mostly similar with slightly elevated atomic oxygen lines by ps-LIBS. Spectra from fs-LIBS show the lowest continuum background and prominent individual atomic lines, though have significantly weaker ionic emission from nitrogen. A qualitative explanation based on assumed local thermodynamic equilibrium and electron temperatures calculated by theNII(565nm)andNII(594nm)emissions is presented. In studying line emission ratios for FAR calculation, it is found thatHα<#comment/>(656nm)/NII(568nm)is best for FAR measurements with ns-LIBS and remains viable for ps-LIBS, whileHα<#comment/>(656nm)/OI(777nm)is optimal for the ps-LIBS and fs-LIBS cases. Due to low continuum background and short time delay for spectra collection, fs-LIBS is very promising for high-speed FAR measurements using short-gated LIBS.

     
    more » « less
  4. Materials with strong second-order (χ<#comment/>(2)) optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-lossχ<#comment/>(2)materials remains challenging and limits the threshold power of on-chipχ<#comment/>(2)OPO. Here we report an on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase-matched, high-quality microring resonator, whose threshold power (∼<#comment/>30µ<#comment/>W) is 400 times lower than that in previousχ<#comment/>(2)integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained from pump to signal and idler fields at a pump power of 93 µW. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase-matching, and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides a potential platform for realizing photonic neural networks.

     
    more » « less
  5. We experimentally demonstrate simultaneous turbulence mitigation and channel demultiplexing in a 200 Gbit/s orbital-angular-momentum (OAM) multiplexed link by adaptive wavefront shaping and diffusing (WSD) the light beams. Different realizations of two emulated turbulence strengths (the Fried parameterr0=0.4,1.0mm) are mitigated. The experimental results show the following. (1) Crosstalk between OAMl=+1andl=−<#comment/>1modes can be reduced by><#comment/>10.0and><#comment/>5.8dB, respectively, under the weaker turbulence (r0=1.0mm); crosstalk is further improved by><#comment/>17.7and><#comment/>19.4dB, respectively, under most realizations in the stronger turbulence (r0=0.4mm). (2) The optical signal-to-noise ratio penalties for the bit error rate performance are measured to be∼<#comment/>0.7and∼<#comment/>1.6dBunder weaker turbulence, while measured to be∼<#comment/>3.2and∼<#comment/>1.8dBunder stronger turbulence for OAMl=+1andl=−<#comment/>1mode, respectively.

     
    more » « less