skip to main content


Title: Monkeys in the Middle: Modeling ecological flexibility and niche construction in African cercopithecid primates
Niche construction is broadly defined as an organism’s influence over its environment, ranging from the depletion of local resources to the intentional modification of landscapes and ecosystems. While modern humans excel at the latter, the exact timing and nature of our transition to being complex cultural niche constructors remains to be determined. Here I use methods taken from community ecology to develop a baseline model of minimal niche construction within a group of primate generalists. This serves as an important comparison for interpretations of the hominin fossil record and broader paleontological record to determine when and how our hominin ancestors began to diverge from this pattern. Dental metric data were used in principal components analysis to reconstruct the dietary ecomorphological niches of a sample African cercopithecid primates from the Plio-Pleistocene to today. Potential niche construction is identified through the displacement of co-occurring species indicating that the focal taxon has excluded potential competitors through resource depletion. Overall, fossil taxa are shown to occupy a more restricted niche than their extant relatives, but otherwise exhibit similar patterns of dispersion and overlap within and across communities. The lack of consistent trends within the Plio-Pleistocene sample — either through time or in response to potential confamilial competition — supports the idea that these generalized primates are not exerting a significant influence over their local environments. I conclude with some suggestions on expanding these analyses to look for evidence of niche construction in other paleontological and paleoanthropological contexts.  more » « less
Award ID(s):
1926163
NSF-PAR ID:
10172350
Author(s) / Creator(s):
Date Published:
Journal Name:
Program of the Annual Meeting of the American Association of Physical Anthropologists
Volume:
171
Issue:
S69
ISSN:
2331-1355
Page Range / eLocation ID:
264-265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Eyasi Plateau Paleontological Expedition (EPPE) Laetoli specimen database contains 13716 records of plant and animal fossils (ca. 28248 specimens) collected by EPPE field teams working at Laetoli, Tanzania between 1998 and 2005. This dataset is a digital version of the original hard-copy specimen catalog, and it documents the discovery, stratigraphic provenience and taxonomic diversity of Plio-Pleistocene fauna and flora in northern Tanzania between 4.4 Ma and >200 ka. Laetoli is renowned for the discovery of important hominin fossils, including the lectotype forAustralopithecus afarensis, one of our early hominin ancestors, the first record ofParanthropus aethiopicusoutside Kenya-Ethiopia, and an early record of our own speciesHomo sapiens. This database is one of the few publicly available palaeoanthropological fossil datasets and serves as an example for expanding open access to primary fossil occurrence data in palaeoanthropology. The taxonomic identifications appearing in this dataset are the original field identifications and are provisional. Any taxonomic analysis employing this dataset should refer to updated taxonomic identifications published by specialists.

     
    more » « less
  2. null (Ed.)
    Fossil cercopithecid primates of the African Plio-Pleistocene are often found together in fossil deposits across East and South Africa. These species may have co-occurred in life and exploited similar types of resources in shared environments, as extant monkeys in Africa and Asia are known to do. Some of these fossil species are represented today by congeneric or descendant species with similar adaptations while others have no modern analogue. This project uses dental morphology to compare community structure across potentially co-occurring fossil and modern cercopithecid populations (the cercopithecid taxocene). Relative enamel thickness, shearing potential, and dental shape ratios from the P4 – M3 toothrow were measured from extant (n > 700) and fossil cercopithecid specimens (n > 1000). The latter primarily targeted the Hadar, Shungura, and Koobi Fora Formations of East Africa and the sites of Makapansgat, Sterkfontein, and Swartkrans in South Africa. Principal component analyses were performed separately on the maxillary and mandibular dentitions and resulting component scores were used to reconstruct the taxocene dental morphology at each site. In general, the African cercopithecid taxocene is similar across the main fossil sites analyzed. Patterns of overlap between fossil and modern sites may reflect environmental similarities or the adaptability of generalist cercopithecids. An apparent niche shift from the Plio-Pleistocene to today reflects both taphonomic and ecological factors: a lack of smaller-bodied fossil cercopithecin and colobine species combined with an expanded dental ecomorphological niche of larger-bodied fossil species. 
    more » « less
  3. Understanding the relationships between functional traits and environment is increasingly important for assessing ecosystem health and forecasting biotic responses to future environmental change. Taxon-free analyses of functional traits (ecometrics) allow for testing the performance of such traits through time, utilizing both the fossil record and paleoenvironmental proxies. Here, we test the role of body size as a functional trait with respect to climate, using turtles as a model system. We examine the influence of mass-specific metabolic rate as a functional factor in the sorting of body size with environmental temperature and investigate the utility of community body size composition as an ecometric correlated to climate variables. We then apply our results to the fossil record of the Plio-Pleistocene Shungura Formation in Ethiopia. Results show that turtle body sizes scale with mass-specific metabolic rate for larger taxa, but not for the majority of species, indicating that metabolism is not a primary driver of size. Body size ecometrics have stronger predictive power at continental than at global scales, but without a single, dominant predictive functional relationship. Application of ecometrics to the Shungura fossil record suggests that turtle paleocommunity ecometrics coarsely track independent paleoclimate estimates at local scales. We hypothesize that both human disruption and biotic interactions limit the ecometric fit of size to climate in this clade. Nonetheless, examination of the consistency of trait–environment relationships through deep and shallow time provides a means for testing anthropogenic influences on ecosystems.

     
    more » « less
  4. Abstract

    Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from ~620,000 to 275,000 yearsbp(episodes 1–6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7–9 (~275,000–60,000 yearsbp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence ofHomo sapiensin eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10–12 (~60,000–10,000 yearsbp) could have facilitated the global dispersal ofH. sapiens.

     
    more » « less
  5. Paleoanthropologists have long speculated about the role of environmental change in shaping human evolution in Africa. In recent years, drill cores of late Neogene lacustrine sedimentary rocks have yielded valuable high-resolution records of climatic and ecosystem change. Eastern African Rift sediments (primarily lake beds) provide an extraordinary range of data in close proximity to important fossil hominin and archaeological sites, allowing critical study of hypotheses that connect environmental history and hominin evolution. We review recent drill-core studies spanning the Plio–Pleistocene boundary (an interval of hominin diversification, including the earliest members of our genus Homo and the oldest stone tools), and the Mid–Upper Pleistocene (spanning the origin of Homo sapiens in Africa and our early technological and dispersal history). Proposed drilling of Africa's oldest lakes promises to extend such records back to the late Miocene. ▪ High-resolution paleoenvironmental records are critical for understanding external drivers of human evolution. ▪ African lake basin drill cores play a critical role in enhancing hominin paleoenvironmental records given their continuity and proximity to key paleoanthropological sites. ▪ The oldest African lakes have the potential to reveal a comprehensive paleoenvironmental context for the entire late Neogene history of hominin evolution. 
    more » « less