skip to main content


Title: Ooid Cortical Stratigraphy Reveals Common Histories of Individual Co‐occurring Sedimentary Grains
Abstract

Ooids are a common type of carbonate sand grain that form through a combination of constructive and destructive mechanisms: growth via precipitation and diminution via physical abrasion. Because growth and abrasion obey distinct morphometric rules, we developed an approach to quantitatively constrain the history of growth and abrasion of individual ooid grains using the record of evolving particle shape preserved by their cortical layers. We designed a model to simulate >106possible growth‐abrasion histories for each pair of cortical layer bounding surfaces in an individual ooid. Estimates for the durations of growth and abrasion of each cortical layer were obtained by identifying the simulated history that best fit the observed particle shape. We applied this approach to thin sections of “modern” lacustrine ooids collected from several locations in the Great Salt Lake (GSL), UT, to assess the spatial and temporal variability of environmental conditions from the perspective of individual grains within a single deposit. We found that GSL ooids do not all share the same histories: Clustering ooid histories by a Fréchet distance metric revealed commonalities between grains found together locally within a deposit but distinct differences between subpopulations shared among localities across the GSL. These results support the tacit view that carbonate sedimentary grains found together in the environment do reflect a common history of sediment transport. This general approach to invert ooid cortical stratigraphy can be applied to characterize environmental variability over <1,000 year timescales in both marine and lacustrine ooid grainstones of any geologic age.

 
more » « less
Award ID(s):
1826850
NSF-PAR ID:
10446793
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
125
Issue:
7
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbonate mud represents one of the most important geochemical archives for reconstructing ancient climatic, environmental, and evolutionary change from the rock record. Mud also represents a major sink in the global carbon cycle. Yet, there remains no consensus about how and where carbonate mud is formed. Here, we present stable isotope and trace-element data from carbonate constituents in the Bahamas, including ooids, corals, foraminifera, and algae. We use geochemical fingerprinting to demonstrate that carbonate mud cannot be sourced from the abrasion and mixture of any combination of these macroscopic grains. Instead, an inverse Bayesian mixing model requires the presence of an additional aragonite source. We posit that this source represents a direct seawater precipitate. We use geological and geochemical data to show that “whitings” are unlikely to be the dominant source of this precipitate and, instead, present a model for mud precipitation on the bank margins that can explain the geographical distribution, clumped-isotope thermometry, and stable isotope signature of carbonate mud. Next, we address the enigma of why mud and ooids are so abundant in the Bahamas, yet so rare in the rest of the world: Mediterranean outflow feeds the Bahamas with the most alkaline waters in the modern ocean (>99.7th-percentile). Such high alkalinity appears to be a prerequisite for the nonskeletal carbonate factory because, when Mediterranean outflow was reduced in the Miocene, Bahamian carbonate export ceased for 3-million-years. Finally, we show how shutting off and turning on the shallow carbonate factory can send ripples through the global climate system. 
    more » « less
  2. Abstract

    Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.

     
    more » « less
  3. Abstract

    We present a full characterization of a 20 cm‐thick tephra layer found intercalated in the marine sediments recovered at Site U1524 during International Ocean Discovery Program (IODP) Expedition 374, in the Ross Sea, Antarctica. Tephra bedforms, mineral paragenesis, and major‐ and trace‐element composition on individual glass shards were investigated and the tephra age was constrained by40Ar‐39Ar on sanidine crystals. The40Ar‐39Ar data indicate that sanidine grains are variably contaminated by excess Ar, with the best age estimate of 1.282 ± 0.012 Ma, based on both single‐grain total fusion analyses and step‐heating experiments on multi‐grain aliquots. The tephra is characterized by a very homogeneous rhyolitic composition and a peculiar mineral assemblage, dominated by sanidine, quartz, and minor aenigmatite and arfvedsonite‐riebeckite amphiboles. The tephra from Site U1524 compositionally matches with a ca. 1.3 Ma, rhyolitic pumice fall deposit on the rim of the Chang Peak volcano summit caldera, in the Marie Byrd Land, located ca. 1,300 km from Site U1524. This contribution offers important volcanological data on the eruptive history of Chang Peak volcano and adds a new tephrochronologic marker for the dating, correlation, and synchronization of marine and continental early Pleistocene records of West Antarctica.

     
    more » « less
  4. Abstract

    Tufa domes and towers are common around the margins of Winnemucca Dry Lake, Nevada,USA, a desiccated sub‐basin of pluvial Lake Lahontan. A 2·5 m diameter concentrically‐layered tufa mound from the southern end of the playa was sampled along its growth axis to determine timing, rate and geochemical conditions of tufa growth. A radiocarbon‐based age model indicates an 8200‐year tufa depositional record that begins near the end of the Last Glacial Maximum (ca23 400 cal yr bp) and concludes at the end of the most recent Lahontan highstand (ca15 200 cal yr bp). Petrography, stable isotopes and major and minor elemental compositions are used to evaluate the rate and timing of tufa growth in the context of the depositional environment. The deposit built radially outward from a central nucleation point, with six decimetre‐scale layers defined by variations in texture. Two distinct tufa types are observed: the inner section is composed of two layers of thinolite pseudomorphs after ikaite, with the innermost layer comprised of very small pseudomorphs (<0·25 cm) and an outer layer composed of larger,ca3 cm long pseudomorphs, followed by a transitional layer where thinolite pseudomorphs grade into calcite fans. The outer section consists of three distinct layers of thrombolitic micrite with a branching mesofabric. The textural change occurred as lake levels began to rise towards the most recent Lahontan highstand interval and probably was prompted by warming of lake waters caused by increased groundwater flux during highstand lake levels. The Mg/Ca and Sr/Ca variations suggest a warming trend in the tufa growth environment and may also reflect increasing growth rates of tufa associated with increased fluxes of groundwater. This systematic study of tufa deposition indicates the importance of the hydrology of the lacustrine tufa system for reconstructing palaeoenvironmental records, and particularly the interaction of ground and surface waters.

     
    more » « less
  5. The long-term variability of lacustrine dynamics is influenced by hydro-climatological factors that affect the depth and spatial extent of water bodies. The primary objective of this study is to delineate lake area extent, utilizing a machine learning approach, and to examine the impact of these hydro-climatological factors on lake dynamics. In situ and remote sensing observations were employed to identify the predominant explanatory pathways for assessing the fluctuations in lake area. The Great Salt Lake (GSL) and Lake Chad (LC) were chosen as study sites due to their semi-arid regional settings, enabling the testing of the proposed approach. The random forest (RF) supervised classification algorithm was applied to estimate the lake area extent using Landsat imagery that was acquired between 1999 and 2021. The long-term lake dynamics were evaluated using remotely sensed evapotranspiration data that were derived from MODIS, precipitation data that were sourced from CHIRPS, and in situ water level measurements. The findings revealed a marked decline in the GSL area extent, exceeding 50% between 1999 and 2021, whereas LC exhibited greater fluctuations with a comparatively lower decrease in its area extent, which was approximately 30% during the same period. The framework that is presented in this study demonstrates the reliability of remote sensing data and machine learning methodologies for monitoring lacustrine dynamics. Furthermore, it provides valuable insights for decision makers and water resource managers in assessing the temporal variability of lake dynamics. 
    more » « less