Abstract The development of nanoparticle‐based biomedical applications has been hampered due to undesired off‐target effects. Herein, we outline a cellular AND gate to enhance uptake selectivity, in which a nanoassembly–cell interaction is turned on, only in the concurrent presence of two different protein functions, an enzymatic reaction (alkaline phosphatase, ALP) and a ligand–protein (carbonic anhydrase IX, CA IX) binding event. Selective uptake of nanoassemblies was observed in cells that overexpress both of these proteins (unicellular AND gate). Interestingly, selective uptake can also be achieved in CA IX overexpressed cells, when cocultured with ALP overexpressed cells, where the nanoassembly presumably acts as a mediator for cell–cell communication (bicellular AND gate). This logic‐gated cellular uptake could find use in applications such as tumor imaging or theranostics.
more »
« less
Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS
Rhodamine derivatives have been widely investigated for their mitochondrial targeting and chemotherapeutic properties that result from their lipophilic cationic structures. In previous research, we have found that conversion of Rhodamine 6G into nanoGUMBOS, i.e., nanomaterials derived from a group of uniform materials based on organic salts (GUMBOS), led to selective chemotherapeutic toxicity for cancer cells over normal cells. Herein, we investigate the chemotherapeutic activity of GUMBOS derived from four different rhodamine derivatives, two bearing an ester group, i.e., Rhodamine 123 (R123) and SNAFR-5, and two bearing a carboxylic acid group, i.e., rhodamine 110 (R110) and rhodamine B (RB). In this study, we evaluate 1) relative hydrophobicity via octanol–water partition coefficients, 2) cytotoxicity, and 3) cellular uptake in order to evaluate possible structure–activity relationships between these different compounds. Intriguingly, we found that while GUMBOS derived from R123 and SNAFR-5 formed nanoGUMBOS in aqueous medium, no distinct nanoparticles are observed for RB and R110 GUMBOS. Further investigation revealed that the relatively high water solubility of R110 and RB GUMBOS hinders nanoparticle formation. Subsequently, while R123 and SNAFR-5 displayed selective chemotherapeutic toxicity similar to that of previously investigated R6G nanoGUMBOS, the R110 and RB GUMBOS were lacking in this property. Additionally, the chemotherapeutic toxicities of R123 and SNAFR-5 nanoGUMBOS were also significantly greater than R110 and RB GUMBOS. Observed results were consistent with decreased cellular uptake of R110 and RB as compared to R123 and SNAFR-5 compounds. Moreover, these results are also consistent with previous observations that suggest that nanoparticle formation is critical to the observed selective chemotherapeutic properties as well as the chemotherapeutic efficacy of rhodamine nanoGUMBOS.
more »
« less
- Award ID(s):
- 1905105
- PAR ID:
- 10172713
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 25
- Issue:
- 14
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 3272
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The mitochondrial calcium uniporter (MCU) mediates uptake of calcium ions (Ca2+) into the mitochondria, a process that is vital for maintaining normal cellular function. Inhibitors of the MCU, the most promising of which are dinuclear ruthenium coordination compounds, have found use as both therapeutic agents and tools for studying the importance of this ion channel. In this study, six Co3+cage compounds with sarcophagine‐like ligands were assessed for their abilities to inhibit MCU‐mediated mitochondrial Ca2+uptake. These complexes were synthesized and characterized according to literature procedures and then investigated in cellular systems for their MCU‐inhibitory activities. Among these six compounds, [Co(sen)]3+(3, sen=5‐(4‐amino‐2‐azabutyl)‐5‐methyl‐3,7‐diaza‐1,9‐nonanediamine) was identified to be a potent MCU inhibitor, with IC50values of inhibition of 160 and 180 nM in permeabilized HeLa and HEK293T cells, respectively. Furthermore, the cellular uptake of compound3was determined, revealing moderate accumulation in cells. Most notably,3was demonstrated to operate in intact cells as an MCU inhibitor. Collectively, this work presents the viability of using cobalt coordination complexes as MCU inhibitors, providing a new direction for researchers to investigate.more » « less
-
Extracellular vesicles (EVs) have shown great potential as cell-free therapeutics and biomimetic nanocarriers for drug delivery. However, the potential of EVs is limited by scalable, reproducible production and in vivo tracking after delivery. Here, we report the preparation of quercetin-iron complex nanoparticle-loaded EVs derived from a breast cancer cell line, MDA-MB-231br, using direct flow filtration. The morphology and size of the nanoparticle-loaded EVs were characterized using transmission electron microscopy and dynamic light scattering. The SDS-PAGE gel electrophoresis of those EVs showed several protein bands in the range of 20–100 kDa. The analysis of EV protein markers by a semi-quantitative antibody array confirmed the presence of several typical EV markers, such as ALIX, TSG101, CD63, and CD81. Our EV yield quantification suggested a significant yield increase in direct flow filtration compared with ultracentrifugation. Subsequently, we compared the cellular uptake behaviors of nanoparticle-loaded EVs with free nanoparticles using MDA-MB-231br cell line. Iron staining studies indicated that free nanoparticles were taken up by cells via endocytosis and localized at a certain area within the cells while uniform iron staining across cells was observed for cells treated with nanoparticle-loaded EVs. Our studies demonstrate the feasibility of using direct flow filtration for the production of nanoparticle-loaded EVs from cancer cells. The cellular uptake studies suggested the possibility of deeper penetration of the nanocarriers because the cancer cells readily took up the quercetin-iron complex nanoparticles, and then released nanoparticle-loaded EVs, which can be further delivered to regional cells.more » « less
-
null (Ed.)Introduction: Humans are intentionally exposed to gold nanoparticles (AuNPs) where they are used in variety of biomedical applications as imaging and drug delivery agents as well as diagnostic and therapeutic agents currently in clinic and in a variety of upcoming clinical trials. Consequently, it is critical that we gain a better understanding of how physiochemical properties such as size, shape, and surface chemistry drive cellular uptake and AuNP toxicity in vivo. Understanding and being able to manipulate these physiochemical properties will allow for the production of safer and more efficacious use of AuNPs in biomedical applications. Methods and Materials: Here, AuNPs of three sizes, 5 nm, 10 nm, and 20 nm, were coated with a lipid bilayer composed of sodium oleate, hydrogenated phosphatidylcholine, and hexanethiol. To understand how the physical features of AuNPs influence uptake through cellular membranes, sum frequency generation (SFG) was utilized to assess the interactions of the AuNPs with a biomimetic lipid monolayer composed of a deuterated phospholipid 1.2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (dDPPC). Results and Discussion: SFG measurements showed that 5 nm and 10 nm AuNPs are able to phase into the lipid monolayer with very little energetic cost, whereas, the 20 nm AuNPs warped the membrane conforming it to the curvature of hybrid lipid-coated AuNPs. Toxicity of the AuNPs were assessed in vivo to determine how AuNP curvature and uptake influence cell health. In contrast, in vivo toxicity tested in embryonic zebrafish showed rapid toxicity of the 5 nm AuNPs, with significant 24 hpf mortality occurring at concentrations ≥ 20 mg/L, whereas the 10 nm and 20 nm AuNPs showed no significant mortality throughout the five-day experiment. Conclusion: By combining information from membrane models using SFG spectroscopy with in vivo toxicity studies, a better mechanistic understanding of how nanoparticles (NPs) interact with membranes is developed to understand how the physiochemical features of AuNPs drive nanoparticle–membrane interactions, cellular uptake, and toxicity.more » « less
-
Nanomaterials that respond to intracellular signals, such as pH, have potential for many biomedical applications, such as drug delivery, because the assembly/disassembly process can be tailored to respond to a stimulus characteristic of a specific subcellular location. In this work, two rhodamine-peptides that form stable nanotubes at physiological pH but dissociate into highly fluorescent monomers within the acidified interior of endosomal/lysosomal cellular compartments has been developed. The rhodamine dipeptide conjugates, NH2-KK(RhB)-NH2 (RhB-KK) and NH2-EK(RhB)-NH2 (RhB-KE) with rhodamine B chromophores appended at the ε-amino position of a lysine residue, were shown to assemble into well-defined nanotubes at pH values above ~4-5 and to dissociate into a fluorescent monomer state at lower pH values. The pH-dependence of the assembly process was investigated using CD and fluorescence spectroscopy along with TEM, AFM and confocal imaging. Although the ring opening/closing transition of the rhodamine chromophore took place at pH 4.1 for both peptides, the onset of assembly began at pH 4.6 for RhB-KE and at a comparatively more basic pH (5.8) for RhB-KK. Accordingly, the rhodamine-peptides interconverted between three, pH-dependent states: an open-ring, monomeric state (max 580 nm, 𝜆ex 550 nm) at pH values at or below ~4.6; a closed-ring, nanotube form that exhibits AIEE (max 460 nm, 𝜆ex = 330 nm) at higher pH values and a closed-ring, non-emissive monomeric state that emerged below the CMC. The pH-responsive features of the peptides were evaluated by live-cell imaging in three cancer cell lines using confocal laser scanning microscopy (CLSM). Visualizing the cells after incubation with either RhB-KE or RhB-KK produced CLSM images with a punctate appearance in the Texas Red channel that colocalized with the lysosomes. These experiments indicating that the nanotubes were rapidly trafficked into the acidic lysosomal compartments within the cells, which induced dissociation into a monomeric, open state. Uptake inhibition studies suggested that cellular uptake was mediated by either or both caveolae- and clathrin-mediated endocytosis, depending on the cell line studied.more » « less
An official website of the United States government

