Abstract In 2020, Arizonans approved Proposition 207, the Smart and Safe Arizona Act, which legalized recreational marijuana sales. Previous research has typically used non‐spatial survey data to understand marijuana legalization voting patterns. However, voting behavior can, in part, be shaped by geographic context, or place, which is unaccounted for in aspatial survey data. We use multiscale geographically weighted regression to analyze how place shaped Proposition 207 voting behavior, independently of demographic variations across space. We find significant spatial variability in the sensitivity of voting for Proposition 207 to changes in several of the predictor variables of opposition and support for recreational marijuana legalization. We argue that local statistical modeling approaches provide a more in‐depth understanding of ballot measure voting behavior than the current use of global models. Related ArticlesBranton, Regina, and Ronald J. McGauvran. 2018. “Mary Jane Rocks the Vote: The Impact of Climate Context on Support for Cannabis Initiatives.”Politics & Policy46(2): 209–32.https://doi.org/10.1111/polp.12248.Brekken, Katheryn C., and Vanessa M. Fenley. 2020. “Part of the Narrative: Generic News Frames in the U.S. Recreational Marijuana Policy Subsystem.”Politics & Policy49(1): 6–32.https://doi.org/10.1111/polp.12388.Fisk, Jonathan M., Joseph A. Vonasek, and Elvis Davis. 2018. “‘Pot'reneurial Politics: The Budgetary Highs and Lows of Recreational Marijuana Policy Innovation.”Politics & Policy46(2): 189–208.https://doi.org/10.1111/polp.12246.
more »
« less
Survey on the Analysis of User Interactions and Visualization Provenance
Abstract There is fast‐growing literature on provenance‐related research, covering aspects such as its theoretical framework, use cases, and techniques for capturing, visualizing, and analyzing provenance data. As a result, there is an increasing need to identify and taxonomize the existing scholarship. Such an organization of the research landscape will provide a complete picture of the current state of inquiry and identify knowledge gaps or possible avenues for further investigation. In this STAR, we aim to produce a comprehensive survey of work in the data visualization and visual analytics field that focus on the analysis of user interaction and provenance data. We structure our survey around three primary questions: (1) WHY analyze provenance data, (2) WHAT provenance data to encode and how to encode it, and (3) HOW to analyze provenance data. A concluding discussion provides evidence‐based guidelines and highlights concrete opportunities for future development in this emerging area. The survey and papers discussed can be explored online interactively athttps://provenance-survey.caleydo.org.
more »
« less
- Award ID(s):
- 1755734
- PAR ID:
- 10172940
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Computer Graphics Forum
- Volume:
- 39
- Issue:
- 3
- ISSN:
- 0167-7055
- Page Range / eLocation ID:
- p. 757-783
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Macromolecular protein complexes carry out most functions in the cell including essential functions required for cell survival. Unfortunately, we lack the subunit composition for all human protein complexes. To address this gap we integrated >25,000 mass spectrometry experiments using a machine learning approach to identify > 15,000 human protein complexes. We show our map of protein complexes is highly accurate and more comprehensive than previous maps, placing ∼75% of human proteins into their physical contexts. We globally characterize our complexes using protein co-variation data (ProteomeHD.2) and identify co-varying complexes suggesting common functional associations. Our map also generates testable functional hypotheses for 472 uncharacterized proteins which we support using AlphaFold modeling. Additionally, we use AlphaFold modeling to identify 511 mutually exclusive protein pairs in hu.MAP3.0 complexes suggesting complexes serve different functional roles depending on their subunit composition. We identify expression as the primary way cells and organisms relieve the conflict of mutually exclusive subunits. Finally, we import our complexes to EMBL-EBI’s Complex Portal (https://www.ebi.ac.uk/complexportal/home) as well as provide complexes through our hu.MAP3.0 web interface (https://humap3.proteincomplexes.org/). We expect our resource to be highly impactful to the broader research community.more » « less
-
Abstract Journal editors have a large amount of power to advance open science in their respective fields by incentivising and mandating open policies and practices at their journals. The Data PASS Journal Editors Discussion Interface (JEDI, an online community for social science journal editors:www.dpjedi.org) has collated several resources on embedding open science in journal editing (www.dpjedi.org/resources). However, it can be overwhelming as an editor new to open science practices to know where to start. For this reason, we created a guide for journal editors on how to get started with open science. The guide outlines steps that editors can take to implement open policies and practices within their journal, and goes through the what, why, how, and worries of each policy and practice. This manuscript introduces and summarizes the guide (full guide:https://doi.org/10.31219/osf.io/hstcx).more » « less
-
Abstract The DESI Milky Way Survey (MWS) will observe ≥8 million stars between 16 < r < 19 mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and population gradients, characterize diffuse substructure in the thick disk and stellar halo, enable the discovery of extremely metal-poor stars and other rare stellar types, and improve constraints on the Galaxy’s 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public (Available at https://data.desi.lbl.gov/public/ets/target/catalogs/and detailed at https://desidatamodel.readthedocs.io).more » « less
-
Abstract Nonnegative matrix factorization (NMF) is widely used to analyze high-dimensional count data because, in contrast to real-valued alternatives such as factor analysis, it produces an interpretable parts-based representation. However, in applications such as spatial transcriptomics, NMF fails to incorporate known structure between observations. Here, we present nonnegative spatial factorization (NSF), a spatially-aware probabilistic dimension reduction model based on transformed Gaussian processes that naturally encourages sparsity and scales to tens of thousands of observations. NSF recovers ground truth factors more accurately than real-valued alternatives such as MEFISTO in simulations, and has lower out-of-sample prediction error than probabilistic NMF on three spatial transcriptomics datasets from mouse brain and liver. Since not all patterns of gene expression have spatial correlations, we also propose a hybrid extension of NSF that combines spatial and nonspatial components, enabling quantification of spatial importance for both observations and features. A TensorFlow implementation of NSF is available fromhttps://github.com/willtownes/nsf-paper.more » « less
An official website of the United States government
