skip to main content


Title: A meta‐analysis reveals temperature, dose, life stage, and taxonomy influence host susceptibility to a fungal parasite
Abstract

Complex ecological relationships, such as host–parasite interactions, are often modeled with laboratory experiments. However, some experimental laboratory conditions, such as temperature or infection dose, are regularly chosen based on convenience or convention, and it is unclear how these decisions systematically affect experimental outcomes. Here, we conducted a meta‐analysis of 58 laboratory studies that exposed amphibians to the pathogenic fungusBatrachochytrium dendrobatidis(Bd) to understand better how laboratory temperature, host life stage, infection dose, and host species affect host mortality. We found that host mortality was driven by thermal mismatches: hosts native to cooler environments experienced greater Bd‐induced mortality at relatively warm experimental temperatures and vice versa. We also found that Bd dose positively predicted Bd‐induced host mortality and that the superfamilies Bufonoidea and Hyloidea were especially susceptible to Bd. Finally, the effect of Bd on host mortality varied across host life stages, with larval amphibians experiencing lower risk of Bd‐induced mortality than adults or metamorphs. Metamorphs were especially susceptible and experienced mortality when inoculated with much smaller Bd doses than the average dose used by researchers. Our results suggest that when designing experiments on species interactions, researchers should carefully consider the experimental temperature, inoculum dose, and life stage, and taxonomy of the host species.

 
more » « less
Award ID(s):
1947573 1754862
NSF-PAR ID:
10456839
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
4
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As human activities alter environmental conditions, the emergence and spread of disease represents an increasing threat to wildlife. Studies that examine how host–pathogen relationships play out across seasons and latitudes can serve as proxies for understanding how natural and anthropogenic changes in climate may influence infection and disease dynamics. Amphibians are ideal host organisms for studying the impacts of climate on disease because they are ectothermic and threatened by chytridiomycosis, a recently emerged and globally important disease caused by fungal pathogens in the genusBatrachochytrium. Previous studies suggest that temperature affects the interaction between amphibians andBatrachochytriumpathogens. However, a clearer understanding of this host–pathogen–environment interaction is needed to predict how the risk of chytridiomycosis will vary in space and time. Here, we investigate how daily, seasonal, and latitudinal variations in temperature affect the incidence and impact ofBatrachochytrium dendrobatidis(Bd) infection in a broadly distributed host, the northern cricket frog (Acris crepitans), using a combination of field and laboratory studies. In a four‐year field study conducted at three latitudes, we found that daily maximum air temperature over a 15‐d period prior to sampling best predicted patterns ofBdinfection and that the lightest infection loads followed periods when these temperatures exceeded 25°C. In a laboratory exposure experiment, we found pathogen load and mortality to be greater at temperatures that mimic winter temperatures at the southern extent of this host's range than for scenarios that mimic temperature conditions experienced in other areas and seasons. Taken together, our findings suggest that changes in temperature across timescales and latitudes interact to influence the dynamics of infection and disease in temperate amphibians.

     
    more » « less
  2. Abstract

    Resistance and tolerance are unique host defence strategies that can limit the impacts of a pathogen on a host. However, for most wildlife–pathogen systems, there are still fundamental uncertainties regarding (a) how changes in resistance and tolerance can affect disease outcomes and (b) the mechanisms underlying resistance and tolerance in host populations.

    Here, we first compared observed patterns of resistance and tolerance and their effects on disease outcomes among salamander species that are susceptible to infection and mortality from the emerging fungal pathogenBatrachochytrium salamandrivorans(Bsal). We then tested whether two putative mechanisms that contribute to host resistance and tolerance, skin sloughing and skin lesion reduction, predicted reducedBsalgrowth rate or increased host survival during infection, respectively.

    We performed multi‐doseBsalchallenge experiments on four species of Salamandridae found throughout North America. We combined the laboratory experiments with dynamic models and sensitivity analysis to examine how changes in load‐dependent resistance and tolerance functions affectedBsal‐induced mortality risk. Finally, we used our disease model to test whether skin sloughing and lesion reduction predicted variability in infection outcomes not described byBsalinfection intensity.

    We found that resistance and tolerance differed significantly among salamander species, with the most susceptible species being both less resistance and less tolerant ofBsalinfection. Our dynamic model showed that the relative influence of resistance versus tolerance on host survival was species‐dependent—increasing resistance was only more influential than increasing tolerance for the least tolerant species where changes in pathogen load had a threshold‐like effect on host survival. Testing two candidate mechanisms of resistance and tolerance, skin sloughing and lesion reduction, respectively, we found limited support that either of these processes were strong mechanisms of host defence.

    Our study contributes to a broader understanding of resistance and tolerance in host–pathogen systems by showing that differences in host tolerance can significantly affect whether changes in resistance or tolerance have larger effects on disease outcomes, highlighting the need for species and even population‐specific management approaches that target host defence strategies.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Abstract

    World‐wide, infectious diseases represent a major source of mortality in humans and livestock. For wildlife populations, disease‐induced mortality is likely even greater, but remains notoriously difficult to estimate—especially for endemic infections. Approaches for quantifying wildlife mortality due to endemic infections have historically been limited by an inability to directly observe wildlife mortality in nature.

    Here we address a question that can rarely be answered for endemic pathogens of wildlife: what are the population‐ and landscape‐level effects of infection on host mortality? We combined laboratory experiments, extensive field data and novel mathematical models to indirectly estimate the magnitude of mortality induced by an endemic, virulent trematode parasite (Ribeiroia ondatrae) on hundreds of amphibian populations spanning four native species.

    We developed a flexible statistical model that uses patterns of aggregation in parasite abundance to infer host mortality. Our model improves on previous approaches for inferring host mortality from parasite abundance data by (i) relaxing restrictive assumptions on the timing of host mortality and sampling, (ii) placing all mortality inference within a Bayesian framework to better quantify uncertainty and (iii) accommodating data from laboratory experiments and field sampling to allow for estimates and comparisons of mortality within and among host populations.

    Applying our approach to 301 amphibian populations, we found that trematode infection was associated with an average of between 13% and 40% population‐level mortality. For three of the four amphibian species, our models predicted that some populations experienced >90% mortality due to infection, leading to mortality of thousands of amphibian larvae within a pond. At the landscape scale, the total number of amphibians predicted to succumb to infection was driven by a few high mortality sites, with fewer than 20% of sites contributing to greater than 80% of amphibian mortality on the landscape.

    The mortality estimates in this study provide a rare glimpse into the magnitude of effects that endemic parasites can have on wildlife populations and our theoretical framework for indirectly inferring parasite‐induced mortality can be applied to other host–parasite systems to help reveal the hidden death toll of pathogens on wildlife hosts.

     
    more » « less
  4. Abstract

    To combat the loss of species due to emerging infectious diseases, scientists must incorporate ecological parameters, such as temperature and humidity, to understand how the environment affects host–pathogen interactions. The fungal disease chytridiomycosis is a compelling case study to investigate the role of both temperature and humidity on infectious disease, as both the fungal pathogen (Batrachochytrium dendrobatidis, Bd) and the host (amphibians) are heavily influenced by these abiotic factors. We performed two experiments to investigate the importance of relative humidity and temperature on frog immunity (production of antimicrobial skin secretions) and disease development in captive golden frogs (Atelopus zeteki) of Panama. We found that the quantity of skin secretions significantly decreased over time in frogs moved from low to medium and high relative humidity treatments. FollowingBdexposure, frogs in high temperature (26–27 °C) and high relative humidity (80–90%) had lower pathogen loads and survived significantly longer than frogs kept in all other treatment conditions, including high temperature and low relative humidity. These results suggest that high relative humidity may be an important, although less understood, mediator ofBdinfection and the survival of golden frogs. Because the environment can drastically alter disease dynamics, understanding how temperature and humidity influence chytridiomycosis outcomes in golden frogs may be essential for the success of the reintroduction of captive frogs.

     
    more » « less
  5. Abstract

    To combat the threat of emerging infectious diseases in wildlife, ecoimmunologists seek to understand the complex interactions among pathogens, their hosts, and their shared environments. The cutaneous fungal pathogen Batrachochytrium dendrobatidis (Bd), has led to the decline of innumerable amphibian species, including the Panamanian golden frog (Atelopus zeteki). Given that Bd can evade or dampen the acquired immune responses of some amphibians, nonspecific immune defenses are thought to be especially important for amphibian defenses against Bd. In particular, skin secretions constitute a vital component of amphibian innate immunity against skin infections, but their role in protecting A. zeteki from Bd is unknown. We investigated the importance of this innate immune component by reducing the skin secretions from A. zeteki and evaluating their effectiveness against Bd in vitro and in vivo. Following exposure to Bd in a controlled inoculation experiment, we compared key disease characteristics (e.g., changes in body condition, prevalence, pathogen loads, and survival) among groups of frogs that had their skin secretions reduced and control frogs that maintained their skin secretions. Surprisingly, we found that the skin secretions collected from A. zeteki increased Bd growth in vitro. This finding was further supported by infection and survival patterns in the in vivo experiment where frogs with reduced skin secretions tended to have lower pathogen loads and survive longer compared to frogs that maintained their secretions. These results suggest that the skin secretions of A. zeteki are not only ineffective at inhibiting Bd but may enhance Bd growth, possibly leading to greater severity of disease and higher mortality in this highly vulnerable species. These results differ from those of previous studies in other amphibian host species that suggest that skin secretions are a key defense in protecting amphibians from developing severe chytridiomycosis. Therefore, we suggest that the importance of immune components cannot be generalized across all amphibian species or over time. Moreover, the finding that skin secretions may be enhancing Bd growth emphasizes the importance of investigating these immune components in detail, especially for species that are a conservation priority.

     
    more » « less