skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging
The complex motion of the beating heart is accomplished by the spatial arrangement of contracting cardiomyocytes with varying orientation across the transmural layers, which is difficult to imitate in organic or synthetic models. High-fidelity testing of intracardiac devices requires anthropomorphic, dynamic cardiac models that represent this complex motion while maintaining the intricate anatomical structures inside the heart. In this work, we introduce a biorobotic hybrid heart that preserves organic intracardiac structures and mimics cardiac motion by replicating the cardiac myofiber architecture of the left ventricle. The heart model is composed of organic endocardial tissue from a preserved explanted heart with intact intracardiac structures and an active synthetic myocardium that drives the motion of the heart. Inspired by the helical ventricular myocardial band theory, we used diffusion tensor magnetic resonance imaging and tractography of an unraveled organic myocardial band to guide the design of individual soft robotic actuators in a synthetic myocardial band. The active soft tissue mimic was adhered to the organic endocardial tissue in a helical fashion using a custom-designed adhesive to form a flexible, conformable, and watertight organosynthetic interface. The resulting biorobotic hybrid heart simulates the contractile motion of the native heart, compared with in vivo and in silico heart models. In summary, we demonstrate a unique approach fabricating a biomimetic heart model with faithful representation of cardiac motion and endocardial tissue anatomy. These innovations represent important advances toward the unmet need for a high-fidelity in vitro cardiac simulator for preclinical testing of intracardiac devices.  more » « less
Award ID(s):
1847541 1935291
PAR ID:
10173054
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Robotics
Volume:
5
Issue:
38
ISSN:
2470-9476
Page Range / eLocation ID:
eaay9106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We have discovered a cardiac-inducing RNA (CIR) in the axolotl, Ambystoma mexicanum, (a salamander) and two cardiac inducing RNAs (CIR-6 and CIR-30) in human heart that have the ability to induce the differentiation of non-muscle cells, including induced pluripotent stem cells from human skin, mouse embryonic stem cells, and mouse fibroblasts into cardiomyocytes in vitro. Although the primary sequences of salamander and human RNAs are not homologous, their secondary structures are very similar and we believe account for their shared unique abilities to promote differentiation of non-muscle cells into definitive cardiomyocytes. We are beginning to explore the potential for repair/regeneration of cardiac muscle in vivo using mouse and rat models with induced acute myocardial infarctions (AMI) to determine if pluripotent stem cells or fibroblasts transfected with the human CIRs or CIRs alone injected into the damaged areas of the hearts can effect repair of the damaged cardiac muscle tissue, and return the infarcted hearts and the AMI animal models to pre-heart-attack function again. If cardiac cells damaged in heart attacks can be replaced with living, functioning cardiomyocytes, patients with heart disease would be able to have normal heart function restored and could return to normal pre-heart-attack activity levels. Understanding how CIR transforms non-muscle cells into vigorously contracting, functional cardiac muscle and effectively replacing damaged heart cells with newly-formed cardiac muscle tissue would represent a major breakthrough in modern biology and medicine with the potential to have a significant impact on the survival rate and quality of life of millions of individuals worldwide who suffer heart attacks each year. 
    more » « less
  2. Abstract Cardiac tissues are able to adjust their contractile behavior to adapt to the local mechanical environment. Nonuniformity of the native tissue mechanical properties contributes to the development of heart dysfunctions, yet the current in vitro cardiac tissue models often fail to recapitulate the mechanical nonuniformity. To address this issue, a 3D cardiac microtissue model is developed with engineered mechanical nonuniformity, enabled by 3D‐printed hybrid matrices composed of fibers with different diameters. When escalating the complexity of tissue mechanical environments, cardiac microtissues start to develop maladaptive hypercontractile phenotypes, demonstrated in both contractile motion analysis and force‐power analysis. This novel hybrid system could potentially facilitate the establishment of “pathologically‐inspired” cardiac microtissue models for deeper understanding of heart pathology due to nonuniformity of the tissue mechanical environment. 
    more » « less
  3. Abstract The heart is a dynamic pump whose function is influenced by its mechanical properties. The viscoelastic properties of the heart, i.e., its ability to exhibit both elastic and viscous characteristics upon deformation, influence cardiac function. Viscoelastic properties change during heart failure (HF), but direct measurements of failing and non-failing myocardial tissue stress relaxation under constant displacement are lacking. Further, how consequences of tissue remodeling, such as fibrosis and fat accumulation, alter the stress relaxation remains unknown. To address this gap, we conducted stress relaxation tests on porcine myocardial tissue to establish baseline properties of cardiac tissue. We found porcine myocardial tissue to be fast relaxing, characterized by stress relaxation tests on both a rheometer and microindenter. We then measured human left ventricle (LV) epicardium and endocardium tissue from non-failing, ischemic HF and non-ischemic HF patients by microindentation. Analyzing by patient groups, we found that ischemic HF samples had slower stress relaxation than non-failing endocardium. Categorizing the data by stress relaxation times, we found that slower stress relaxing tissues were correlated with increased collagen deposition and increased α-smooth muscle actin (α-SMA) stress fibers, a marker of fibrosis and cardiac fibroblast activation, respectively. In the epicardium, analyzing by patient groups, we found that ischemic HF had faster stress relaxation than non-ischemic HF and non-failing. When categorizing by stress relaxation times, we found that faster stress relaxation correlated with Oil Red O staining, a marker for adipose tissue. These data show that changes in stress relaxation vary across the different layers of the heart during ischemic versus non-ischemic HF. These findings reveal how the viscoelasticity of the heart changes, which will lead to better modeling of cardiac mechanics for in vitro and in silico HF models. 
    more » « less
  4. In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies. 
    more » « less
  5. Transparent microelectrode arrays (MEAs) that allow multimodal investigation of the spatiotemporal cardiac characteristics are important in studying and treating heart disease. Existing implantable devices, however, are designed to support chronic operational lifetimes and require surgical extraction when they malfunction or are no longer needed. Meanwhile, bioresorbable systems that can self-eliminate after performing temporary functions are increasingly attractive because they avoid the costs/risks of surgical extraction. We report the design, fabrication, characterization, and validation of a soft, fully bioresorbable, and transparent MEA platform for bidirectional cardiac interfacing over a clinically relevant period. The MEA provides multiparametric electrical/optical mapping of cardiac dynamics and on-demand site-specific pacing to investigate and treat cardiac dysfunctions in rat and human heart models. The bioresorption dynamics and biocompatibility are investigated. The device designs serve as the basis for bioresorbable cardiac technologies for potential postsurgical monitoring and treating temporary patient pathological conditions in certain clinical scenarios, such as myocardial infarction, ischemia, and transcatheter aortic valve replacement. 
    more » « less