skip to main content

Title: CiteSeerX: 20 years of service to scholarly big data
We overview CiteSeerX, the pioneer digital library search engine, that has been serving academic communities for more than 20 years (first released in 1998), from three perspectives. The system perspective summarizes its architecture evolution in three phases over the past 20 years. The data perspective describes how CiteSeerX has created searchable scholarly big datasets and made them freely available for multiple purposes. In order to be scalable and effective, AI technologies are employed in all essential modules. To effectively train these models, a sufficient amount of data has been labeled, which can then be reused for training future models. Finally, we discuss the future of CiteSeerX. Our ongoing work is to make Cite- SeerX more sustainable. To this end, we are working to ingest all open access scholarly papers, estimated to be 30-40 million. Part of the plan is to discover dataset mentions and metadata in scholarly articles and make them more accessible via search interfaces. Users will have more opportunities to explore and trace datasets that can be reused and discover other datasets for new research projects. We summarize what was learned to make a similar system more sustainable and useful.
Authors:
; ;
Award ID(s):
1823288
Publication Date:
NSF-PAR ID:
10173327
Journal Name:
Proceedings of the Conference on Artificial Intelligence for Data Discovery and Reuse, AIDR 2019
Page Range or eLocation-ID:
1:1-1:4
Sponsoring Org:
National Science Foundation
More Like this
  1. The volume of scholarly data has been growing exponentially over the last 50 years. The total size of the open access documents is estimated to be 35 million by 2022. The total amount of data to be handled, including crawled documents, production repository, metadata, extracted content, and their replications, can be as high as 350TB. Academic digital library search engines face signi cant challenges in maintaining sustainable services. We discuss these challenges and propose feasible solutions to key modules in the digital library architecture including the document storage, data extraction, database and index. We use CiteSeerX as a case study.
  2. The volume of scholarly data has been growing exponentially over the last 50 years. The total size of the open access documents is estimated to be 35 million by 2022. The total amount of data to be handled, including crawled documents, production repository, metadata, extracted content, and their replications, can be as high as 350TB. Academic digital library search engines face significant challenges in maintaining sustainable services. We discuss these challenges and propose feasible solutions to key modules in the digital library architecture including the document storage, data extraction, database and index. We use CiteSeerX as a case study.
  3. The volume of scholarly data has been growing exponentially over the last 50 years. The total size of the open access documents is estimated to be 35 million by 2022. The total amount of data to be handled, including crawled documents, production repository, metadata, extracted content, and their replications, can be as high as 350TB. Academic digital library search engines face significant challenges in maintaining sustainable services. We discuss these challenges and propose feasible solutions to key modules in the digital library architecture including the document storage, data extraction, database and index. We use CiteSeerX as a case study.
  4. Abstract

    Manufacturing sustainable sodium ion batteries with high energy density and cyclability requires a uniquely tailored technology and a close attention to the economical and environmental factors. In this work, we summarized the most important design metrics in sodium ion batteries with the emphasis on cathode materials and outlined a transparent data reporting approach based on common metrics for performance evaluation of future technologies.

    Sodium-ion batteries are considered as one of the most promising alternatives to lithium-based battery technologies. Despite the growing research in this field, the implementation of this technology has been practically hindered due to a lack of high energy density cathode materials with a long cycle-life. In this perspective, we first provide an overview of the milestones in the development of Na-ion battery (NIB) systems over time. Next, we discuss critical metrics in extraction of key elements used in NIB cathode materials which may impact the supply chain in near future. Finally, in the quest of most promising cathode materials for the next generation of NIBs, we overlay an extensive perspective on the main findings in design and test of more than 295 reports in the past 10 years, exhibiting that layered oxides, Prussian blue analogs (PBAs) andmore »polyanions are leading candidates for cathode materials. An in-depth comparison of energy density and capacity retention of all the currently available cathode materials is also provided. In this perspective, we also highlight the importance of large data analysis for sustainable material design based on available datasets. The insights provided in this perspective, along with a more transparent data reporting approach and an implementation of common metrics for performance evaluation of NIBs can help accelerate future cathode materials design in the NIB field.

    Graphical abstract

    « less
  5. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them inmore »mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments.« less