skip to main content


Title: Kernel principle component analysis applied to Raman spectra to differentiate drugs administered to rabbit cornea in blind study
Scanning confocal Raman spectroscopy was applied for detecting and identifying topically applied ocular pharmaceuticals on rabbit corneal tissue. Raman spectra for Cyclosporin A, Difluprednate, and Dorzolamide were acquired together with Raman spectra from rabbit corneas with an unknown amount of applied drug. Kernel principle component analysis (KPCA) was then used to explore a transform that can describe the acquired set of Raman spectra. Using this transform, we observe some spectral similarity between cornea spectra and Cyclosporin A, with little similarity to Dorzolamide and Difluprednate. Further investigation is needed to identify why these differences occur.  more » « less
Award ID(s):
1810995
NSF-PAR ID:
10173485
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Kernel principle component analysis applied to Raman spectra to differentiate drugs administered to rabbit cornea in blind study
Page Range / eLocation ID:
6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background subtraction is a general problem in spectroscopy often addressed with application-specific techniques, or methods that introduce a variety of implementation barriers such as having to specify peak-free regions of the spectrum. An iterative dual-tree complex wavelet transform-based background subtraction method (DTCWT-IA) was recently developed for the analysis of ultrafast electron diffraction patterns. The method was designed to require minimal user intervention, to support streamlined analysis of many diffraction patterns with complex overlapping peaks and time-varying backgrounds, and is implemented in an open-source computer program. We examined the performance of DTCWT-IA for the analysis of spectra acquired by a range of optical spectroscopies including ultraviolet–visible spectroscopy (UV–Vis), X-ray photoelectron spectroscopy (XPS), and surface-enhanced Raman spectroscopy (SERS). A key benefit of the method is that the user need not specify regions of the spectrum where no peaks are expected to occur. SER spectra were used to investigate the robustness of DTCWT-IA to signal-to-noise levels in the spectrum and to user operation, specifically to two of the algorithm parameter settings: decomposition level and iteration number. The single, general DTCWT-IA implementation performs well in comparison to the different conventional approaches to background subtraction for UV–Vis, XPS, and SERS, while requiring minimal input. The method thus holds the same potential for optical spectroscopy as for ultrafast electron diffraction, namely streamlined analysis of spectra with complex distributions of peaks and varying signal levels, thus supporting real-time spectral analysis or the analysis of data acquired from different sources. 
    more » « less
  2. A spatial heterodyne Raman spectrometer (SHRS), constructed using a modular optical cage and lens tube system, is described for use with a commercial silica and a custom single-crystal (SC) sapphire fiber Raman probe. The utility of these fiber-coupled SHRS chemical sensors is demonstrated using 532 nm laser excitation for acquiring Raman measurements of solid (sulfur) and liquid (cyclohexane) Raman standards as well as real-world, plastic-bonded explosives (PBX) comprising 1,3,5- triamino- 2,4,6- trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) energetic materials. The SHRS is a fixed grating-based dispersive interferometer equipped with an array detector. Each Raman spectrum was extracted from its corresponding fringe image (i.e., interferogram) using a Fourier transform method. Raman measurements were acquired with the SHRS Littrow wavelength set at the laser excitation wavelength over a spectral range of ∼1750 cm−1with a spectral resolution of ∼8 cm−1for sapphire and ∼10 cm−1for silica fiber probes. The large aperture of the SHRS allows much larger fiber diameters to be used without degrading spectral resolution as demonstrated with the larger sapphire collection fiber diameter (330 μm) compared to the silica fiber (100 μm). Unlike the dual silica fiber Raman probe, the dual sapphire fiber Raman probe did not include filtering at the fiber probe tip nearest the sample. Even so, SC sapphire fiber probe measurements produced less background than silica fibers allowing Raman measurements as close as ∼85 cm−1to the excitation laser. Despite the short lengths of sapphire fiber used to construct the sapphire probe, well-defined, sharp sapphire Raman bands at 420, 580, and 750 cm−1were observed in the SHRS spectra of cyclohexane and the highly fluorescent HMX-based PBX. SHRS measurements of the latter produced low background interference in the extracted Raman spectrum because the broad band fluorescence (i.e., a direct current, or DC, component) does not contribute to the interferogram intensity (i.e., the alternating current, or AC, component). SHRS spectral resolution, throughput, and signal-to-noise ratio are also discussed along with the merits of using sapphire Raman bands as internal performance references and as internal wavelength calibration standards in Raman measurements.

     
    more » « less
  3. Infrared and Raman spectroscopy techniques were applied to investigate the drying and aggregation behavior of Nafion ionomer particles dispersed in aqueous solution. Gravimetric measurements aided the identification of gel-phase development within a series of time-resolved spectra that tracked transformations of a dispersion sample during solvent evaporation. A spectral band characteristic of ionomer sidechain end group vibration provided a quantitative probe of the dispersion-to-gel change. For sets of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra, adherence to Beer’s law was attributed to the relatively constant refractive index in the frequency region of hydrated -SO3 - group vibrations as fluorocarbon-rich ionomer regions aggregate in forming the structural framework of membranes and thin films. Although vibrational bands associated with ionomer backbone CF2 stretching vibrations were affected by distortion characteristic of wavelength-dependent refractive index change within a sample, the onset of band distortion signaled gel formation and coincided with ionomer mass % values just below the critical gelation point for Nafion aqueous dispersions. Similar temporal behavior was observed in confocal Raman microscopy experiments that monitored the formation of a thin ionomer film from an individual dispersion droplet. For the ATR FTIR spectroscopy and confocal Raman microscopy techniques, intensity in the water H-O-H bending vibrational band dropped sharply at the ionomer critical gelation point and displayed a time dependence consistent with changes in water content derived from gravimetric measurements. The reported studies lay groundwork for examining the impact of dispersing solvents and above-ambient temperatures on fluorinated ionomer transformations that influence structural properties of dispersion-cast membranes and thin films. 
    more » « less
  4. This dataset contains raw data, processed data, and the codes used for data processing in our manuscript from our Fourier-transform infrared (FTIR) spectroscopy, Nuclear magnetic resonance (NMR), Raman spectroscopy, and X-ray diffraction (XRD) experiments. The data and codes for the fits of our unpolarized Raman spectra to polypeptide spectra is also included. The following explains the folder structure of the data provided in this dataset, which is also explained in the file ReadMe.txt. Browsing the data in Tree view is recommended. Folder contents Codes Raman Data Processing: The MATLAB script file RamanDecomposition.m contains the code to decompose the sub-peaks across different polarized Raman spectra (XX, XZ, ZX, ZZ, and YY), considering a set of pre-determined restrictions. The helper functions used in RamanDecomposition.m are included in the Helpers folder. RamanDecomposition.pdf is a PDF printout of the MATLAB code and output. P Value Simulation: 31_helix.ipynb and a_helix.ipynb: These two Jupyter Notebook files contain the intrinsic P value simulation for the 31-helix and alpha-helix structures. The simulation results were used to prepare Supplementary Table 4. See more details in the comments contained. Vector.py, Atom.py, Amino.py, and Helpers.py: These python files contains the class definitions used in 31_helix.ipynb and a_helix.ipynb. See more details in the comments contained. FTIR FTIR Raw Transmission.opj: This Origin data file contains the raw transmission data measured on single silk strand and used for FTIR spectra analysis. FTIR Deconvoluted Oscillators.opj: This Origin data file was generated from the data contained in the previous file using W-VASE software from J. A. Woollam, Inc. FTIR Unpolarized MultiStrand Raw Transmission.opj: This Origin data file contains the raw transmission data measured on multiple silk strands. The datasets contained in the first two files above were used to plot Figure 2a-b and the FTIR data points in Figure 4a, and Supplementary Figure 6. The datasets contained in the third file above were used to plot Supplementary Figure 3a. The datasets contained in the first two files above were used to plot Figure 2a-b, FTIR data points in Figure 4a, and Supplementary Figure 6. NMR Raw data files of the 13C MAS NMR spectra: ascii-spec_CP.txt: cross-polarized spectrum ascii-spec_DP.txt: direct-polarized spectrum Data is in ASCII format (comma separated values) using the following columns: Data point number Intensity Frequency [Hz] Frequency [ppm] Polypeptide Spectrum Fits MATLAB scripts (.m files) and Helpers: The MATLAB script file Raman_Fitting_Process_Part_1.m and Raman_Fitting_Process_Part_2.m contains the step-by-step instructions to perform the fitting process of our calculated unpolarized Raman spectrum, using digitized model polypeptide Raman spectra. The Helper folder contains two helper functions used by the above scripts. See the scripts for further instruction and information. Data aPA.csv, bPA.csv, GlyI.csv, GlyII.csv files: These csv files contain the digitized Raman spectra of poly-alanine, beta-alanine, poly-glycine-I, and poly-glycine-II. Raman_Exp_Data.mat: This MATLAB data file contains the processed, polarized Raman spectra obtained from our experiments. Variable freq is the wavenumber information of each collected spectrum. The variables xx, yy, zz, xz, zx represent the polarized Raman spectra collected. These variables are used to calculate the unpolarized Raman spectrum in Raman_Fitting_Process_Part_2.m. See the scripts for further instruction and information. Raman Raman Raw Data.mat: This MATLAB data file contains all the raw data used for Raman spectra analysis. All variables are of MATLAB structure data type. Each variable has fields called Freq and Raw, with Freq contains the wavenumber information of the measured spectra and Raw contains 5 measured Raman signal strengths. Variable XX, XZ, ZX, ZZ, and YY were used to plot and sub-peak analysis for Figure 2c-d, Raman data points in Figure 4a, Figure 5b, Supplementary Figure 2, and Supplementary Figure 7. Variable WideRange was used to plot and identify the peaks for Supplementary Figure 3b. X-Ray X-Ray.mat: This MATLAB data file contains the raw X-ray data used for the diffraction analysis in Supplementary Figure 5. 
    more » « less
  5. Abstract

    Stand‐off Raman spectroscopy combined with chemometrics was demonstrated to have great potential for detecting and identifying biological stains from a distance for forensic purposes. Bloodstain spectra were collected using a handheld Raman spectrometer equipped with a stand‐off attachment and compared with spectra acquired with a benchtop Raman microscope. The two sets of spectra were visually similar, supporting the potential use of a handheld Raman spectrometer with stand‐off attachment for blood detection at the scene of crime. In addition, the stand‐off Raman spectra of bloodstains were correctly identified using a previously built SVM‐DA model for the identification of all main body fluids (Muro et al., Forensic Chemistry, 2016). Stand‐off Raman spectroscopy opens a new potential opportunity for further development of Raman spectroscopy as a universal tool for detecting and identifying body fluid traces for forensic purposes.

     
    more » « less