Each year approximately 1.3 billion tons of food is either wasted or lost. One of the most wasted foods in the world is bread. The ability to reuse wasted food in another area of need, such as water scarcity, would provide a tremendous sustainable outcome. To address water scarcity, many areas of the world are now implementing desalination. One desalination technology that could benefit from food waste reuse is capacitive deionization (CDI). CDI has emerged as a powerful desalination technology that essentially only requires a pair of electrodes and a low-voltage power supply. Developing freestanding carbon electrodes from food waste could lower the overall cost of CDI systems and the environmental and economic impact from food waste. We created freestanding CDI electrodes from bread. The electrodes possessed a hierarchical pore structure that enabled both high salt adsorption capacity and one of the highest reported values for hydraulic permeability to date in a flow-through CDI system. We also developed a sustainable technique for electrode fabrication that does not require the use of common laboratory equipment and could be deployed in decentralized locations and developing countries with low-financial resources.
more »
« less
Tandem Desalination/Salination Strategies Enabling the Use of Redox Couples for Efficient and Sustainable Electrochemical Desalination
- Award ID(s):
- 1803496
- PAR ID:
- 10173530
- Date Published:
- Journal Name:
- ACS Applied Materials & Interfaces
- Volume:
- 11
- Issue:
- 42
- ISSN:
- 1944-8244
- Page Range / eLocation ID:
- 38641 to 38647
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inspired by mangrove trees, we present a theoretical design and analysis of a portable desalinating water bottle powered by transpiration. The bottle includes an annular fin for absorbing solar heat, which is used to boost the evaporation rate of water from the interior synthetic leaf. This synthetic leaf comprises a nanoporous film deposited atop a supporting micromesh. Water evaporating from the leaf generates a highly negative Laplace pressure, which pulls the overlying source water across an upstream reverse osmosis membrane. Evaporated water is re-condensed in the bottom of the bottle for collection. The benefit of our hybrid approach to desalination is that reverse osmosis is spontaneously enabled by transpiration, while the thermal evaporation process is enhanced by heat localization and made more durable by pre-filtering the salt. We estimate that a 9.4 cm diameter bottle, with a 10 cm wide annular fin, could harvest about a liter of fresh water per day from ocean water.more » « less
-
Polyamide thickness and roughness have been identified as critical properties that affect thin-film composite membrane performance for reverse osmosis. Conventional formation methodologies lack the ability to control these properties independently with high resolution or precision. An additive approach is presented that uses electrospraying to deposit monomers directly onto a substrate, where they react to form polyamide. The small droplet size coupled with low monomer concentrations result in polyamide films that are smoother and thinner than conventional polyamides, while the additive nature of the approach allows for control of thickness and roughness. Polyamide films are formed with a thickness that is controllable down to 4-nanometer increments and a roughness as low as 2 nanometers while still exhibiting good permselectivity relative to a commercial benchmarking membrane.more » « less
An official website of the United States government

